IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp1302-1320.html
   My bibliography  Save this article

Solar thermal drying plant for agricultural products. Part 1: Direct air heating system

Author

Listed:
  • García-Valladares, O.
  • Ortiz, N.M.
  • Pilatowsky, I.
  • Menchaca, A.C.

Abstract

The need for sustainability, food security and to decouple food prices from the fluctuating prices of finite fossil fuels have driven the search for sustainable processing and the adequate storage of agricultural products. For this reason, a hybrid thermo-solar monitoring plant for the dehydration of foods was successfully designed and built in Zacatecas, Mexico. The thermal energy is provided by a solar air heating system with 48 collectors (111.1 m2) and a solar water heating system with 40 water collectors (92.4 m2). The overall energy efficiency of the field of air heaters was 39.49% with a power capacity of 46.14 kW. A batch test was carried out with direct solar air heating system, in which 288 kg of Nopal (Opuntia ficus) was dehydrated with an initial and final moisture content of 93.03% and 5.76% (wet basis), respectively, which was achieved in 17.62 h, with a maximum theoretical thermal efficiency of the dryer of 60.7% recorded for the first day of testing. Two financial scenarios were used to evaluate the economic efficiency of the solar air heaters; a conventional scenario, comprising a 24-month payback period; and, a scenario with added fiscal incentives, comprising a 17-month payback period.

Suggested Citation

  • García-Valladares, O. & Ortiz, N.M. & Pilatowsky, I. & Menchaca, A.C., 2020. "Solar thermal drying plant for agricultural products. Part 1: Direct air heating system," Renewable Energy, Elsevier, vol. 148(C), pages 1302-1320.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1302-1320
    DOI: 10.1016/j.renene.2019.10.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    2. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    3. Arata, Adolfo & Sharma, Vinod Kumar, 1991. "Performance evaluation of solar assisted dryers for low temperature drying applications—I. Plants description," Renewable Energy, Elsevier, vol. 1(5), pages 729-735.
    4. Esper, A. & Mühlbauer, W., 1998. "Solar drying - an effective means of food preservation," Renewable Energy, Elsevier, vol. 15(1), pages 95-100.
    5. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    6. Condorı́, M & Echazú, R & Saravia, L, 2001. "Solar drying of sweet pepper and garlic using the tunnel greenhouse drier," Renewable Energy, Elsevier, vol. 22(4), pages 447-460.
    7. Smitabhindu, R. & Janjai, S. & Chankong, V., 2008. "Optimization of a solar-assisted drying system for drying bananas," Renewable Energy, Elsevier, vol. 33(7), pages 1523-1531.
    8. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    9. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    10. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    2. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    2. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    3. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    4. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    5. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    6. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    7. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    9. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    10. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    11. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    12. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    13. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    14. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    15. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    16. Yataganbaba, Alptug & Kurtbaş, İrfan, 2016. "A scientific approach with bibliometric analysis related to brick and tile drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 206-224.
    17. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    18. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    19. Poblete, Rodrigo & Cortes, Ernesto & Macchiavello, Juan & Bakit, José, 2018. "Factors influencing solar drying performance of the red algae Gracilaria chilensis," Renewable Energy, Elsevier, vol. 126(C), pages 978-986.
    20. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1302-1320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.