IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5127-d268643.html
   My bibliography  Save this article

Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems

Author

Listed:
  • Kamil Neyfel Çerçi

    (Mechanical Engineering Department, Faculty of Engineering, Osmaniye Korkut Ata University, Merkez 80000, Turkey)

  • Mehmet Daş

    (Vocation High School of Ilic Dursun Yildirim, Erzincan Binali Yildirim University, Ilic, Erzincan 24700, Turkey)

Abstract

As a sustainable energy source, solar energy is used in many applications. A greenhouse type dryer, which is a food drying system, directly benefits from solar energy. Convective heat transfer coefficient ( h c ) is an important parameter in food drying systems, in terms of system design and performance. Many parameters and equations are used to determine h c . However, as it is difficult to manually process and analyze large amounts of data and different formulations, machine learning algorithms are preferred. In this study, natural and forced convective solar greenhouse type dryers were designed. In a solar greenhouse type dryer, grape is dried in natural (GDNC) and forced convection (GDFC). For convective heat transfer coefficient ( h c ), predictive models were created using a multilayer perceptron (MLP)—which has many uses in drying applications, as mentioned in the literature—and decision tree (DT), which has not been used before in food drying applications. The machine learning algorithms and results of the estimated models are compared in this study. Error analyses were performed to determine the accuracy rates of the obtained models. As a result, the h c value of the dried grape product in a natural convective solar greenhouse type dryer was 11.3% higher than that of the forced type. The DT algorithm was found to be a more successful model than the MLP algorithm in estimating hc values in HDFC according to Root Mean Square Error. (RMSE = 0.0903). On the contrary, the MLP algorithm was more successful than the DT algorithm in estimating h c values in GDNC (RMSE = 0.0815).

Suggested Citation

  • Kamil Neyfel Çerçi & Mehmet Daş, 2019. "Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5127-:d:268643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh Chauhan, Prashant & Kumar, Anil & Tekasakul, Perapong, 2015. "Applications of software in solar drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1326-1337.
    2. Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
    3. Condorí, Miguel & Saravia, Luis, 1998. "The performance of forced convection greenhouse driers," Renewable Energy, Elsevier, vol. 13(4), pages 453-469.
    4. Ahmet Beyzade Demirpolat, 2019. "Investigation of Mass Transfer with Different Models in a Solar Energy Food-Drying System," Energies, MDPI, vol. 12(18), pages 1-14, September.
    5. Condorı́, M. & Saravia, L., 2003. "Analytical model for the performance of the tunnel-type greenhouse drier," Renewable Energy, Elsevier, vol. 28(3), pages 467-485.
    6. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    7. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    8. Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arslan, Erhan & Küçük, Furkan Ali & Biçer, Çetin & Özsoy, Burcu, 2024. "Determining energy, exergy and enviroeconomic analysis of stand-alone photovoltaic panel under harsh environment condition: Antarctica Horseshoe-Island cases," Renewable Energy, Elsevier, vol. 226(C).
    2. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chauhan, Prashant Singh & Kumar, Anil & Gupta, Bhupendra, 2017. "A review on thermal models for greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 548-558.
    2. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    3. Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut, 2018. "Heat transfer analysis of PV integrated modified greenhouse dryer," Renewable Energy, Elsevier, vol. 121(C), pages 53-65.
    4. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    5. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    6. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    7. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    9. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    10. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    11. Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
    12. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    13. Chauhan, Prashant Singh & Kumar, Anil, 2017. "Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode," Energy, Elsevier, vol. 118(C), pages 1264-1274.
    14. Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut & Banout, Jan, 2018. "Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer," Renewable Energy, Elsevier, vol. 118(C), pages 799-813.
    15. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    16. Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
    17. Khaled A. Metwally & Awad Ali Tayoush Oraiath & I. M. Elzein & Tamer M. El-Messery & Claude Nyambe & Mohamed Metwally Mahmoud & Mohamed Anwer Abdeen & Ahmad A. Telba & Usama Khaled & Abderrahmane Bero, 2024. "The Mathematical Modeling, Diffusivity, Energy, and Enviro-Economic Analysis (MD3E) of an Automatic Solar Dryer for Drying Date Fruits," Sustainability, MDPI, vol. 16(8), pages 1-29, April.
    18. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    19. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    20. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5127-:d:268643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.