IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v158y2022ics1364032122000582.html
   My bibliography  Save this article

Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach

Author

Listed:
  • Raj, Tirath
  • Chandrasekhar, K.
  • Naresh Kumar, A.
  • Kim, Sang-Hyoun

Abstract

Rapid increment in fossil-derived single-use plastic disposal has led to human-made plastic mountains and leading to ecological imbalance. Therefore, the development of alternative environmentally friendly, biodegradable, and biobased plastics using lignocellulosic biomass renders sustainability. Lignocellulosic biomass offers an unprecedented opportunity to produce renewable fuels, chemicals, and materials for the replacement of fossils-based derivatives. The present review comprehensively delineates the potential of lignocellulosic biomass to produce biodegradable and recyclable plastics and plastic composites. Initially, various available pretreatment methods for the deconstruction of natural recalcitrance for fuel and chemical production are summarized, along with the challenges and scope of the integrated biorefinery approach. Energy chemicals such as ethanol, hydrogen produced under biorefinery approach may serve as precursor for bioplastics productions for sustainable bio future. Recyclable and biodegradable polymers such as polyglycolic acid, polyhydroxyalkanoates, polylactic acid, polybutylene succinate, polyvinyl alcohol, biobased polyethylene, biobased polyethylene terephthalate and cellulose acetate have been critically reviewed. Furthermore, the limitations, hurdles, and future scope of commercially available biorefinery industries are deliberated. Thus, technical development and integration in current biorefinery could promote the economical production of biobased biodegradable and recyclable plastics, simultaneously addressing waste biomass utilization constraints.

Suggested Citation

  • Raj, Tirath & Chandrasekhar, K. & Naresh Kumar, A. & Kim, Sang-Hyoun, 2022. "Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000582
    DOI: 10.1016/j.rser.2022.112130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122000582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    2. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Ankita Shrestha & Mieke C. A. A. van-Eerten Jansen & Bishnu Acharya, 2020. "Biodegradation of Bioplastic Using Anaerobic Digestion at Retention Time as per Industrial Biogas Plant and International Norms," Sustainability, MDPI, vol. 12(10), pages 1-9, May.
    4. Sheng, Yequan & Tan, Xin & Gu, Yuanjie & Zhou, Xin & Tu, Maobing & Xu, Yong, 2021. "Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues," Renewable Energy, Elsevier, vol. 163(C), pages 732-739.
    5. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    6. Duque, Aleta & Manzanares, Paloma & Ballesteros, Mercedes, 2017. "Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications," Renewable Energy, Elsevier, vol. 114(PB), pages 1427-1441.
    7. Hassan, Shady S. & Williams, Gwilym A. & Jaiswal, Amit K., 2019. "Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 590-599.
    8. Laurent C. M. Lebreton & Joost van der Zwet & Jan-Willem Damsteeg & Boyan Slat & Anthony Andrady & Julia Reisser, 2017. "River plastic emissions to the world’s oceans," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    9. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Fengtian Wu & Yuepeng Wang & Yanfei Zhao & Shaojuan Zeng & Zhenpeng Wang & Minhao Tang & Wei Zeng & Ying Wang & Xiaoqian Chang & Junfeng Xiang & Zongbo Xie & Buxing Han & Zhimin Liu, 2024. "Upcycling poly(succinates) with amines to N-substituted succinimides over succinimide anion-based ionic liquids," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Li, Linghao & Zheng, Xiaoen & Zhang, Fan & Yu, Haipeng & Wang, Hong & Jia, Zhiwen & Sun, Yan & Jiang, Enchen & Xu, Xiwei, 2023. "Formamide hydrothermal pretreatment assisted camellia shell for upgrading to N-containing chemical and supercapacitor electrode preparation using the residue," Energy, Elsevier, vol. 265(C).
    4. Zhiyong Cui & Yutao Zhong & Zhijie Sun & Zhennan Jiang & Jingyu Deng & Qian Wang & Jens Nielsen & Jin Hou & Qingsheng Qi, 2023. "Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    2. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    4. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Abdolmaleki, Amir & Nabavizadeh, Sayed Sajad & Badbedast, Mehran, 2021. "1-(Carboxymethyl)pyridinium chloride as an acidic ionic liquid for rice straw effective pretreatment," Renewable Energy, Elsevier, vol. 177(C), pages 544-553.
    6. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    7. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    8. Singh, Renu & Srivastava, Monika & Shukla, Ashish, 2016. "Environmental sustainability of bioethanol production from rice straw in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 202-216.
    9. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    10. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    11. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    12. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    13. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    14. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    15. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    16. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    17. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    19. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    20. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.