IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44892-1.html
   My bibliography  Save this article

Upcycling poly(succinates) with amines to N-substituted succinimides over succinimide anion-based ionic liquids

Author

Listed:
  • Fengtian Wu

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    East China University of Technology, Economic Development Zone)

  • Yuepeng Wang

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yanfei Zhao

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shaojuan Zeng

    (Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences)

  • Zhenpeng Wang

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences)

  • Minhao Tang

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wei Zeng

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ying Wang

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaoqian Chang

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Junfeng Xiang

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences)

  • Zongbo Xie

    (East China University of Technology, Economic Development Zone)

  • Buxing Han

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhimin Liu

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The chemical transformation of waste polymers into value-added chemicals is of significance for circular economy and sustainable development. Herein, we report upcycling poly(succinates) (PSS) with amines into N-substituted succinimides over succinimide anion-based ionic liquids (ILs, e.g, 1,8-diazabicyclo[5.4.0]undec-7-ene succinimide, [HDBU][Suc]). Assisted with H2O, [HDBU][Suc]) showed the best performance, which could achieve complete transformation of a series of PSS into succinimide derivatives and corresponding diols under mild and metal-free conditions. Mechanism investigation indicates that the cation-anion confined hydrogen-bonding interactions among IL, H2O, ester group, and amino/amide groups, strengthens nucleophilicity of the N atoms in amino/amide groups, and improves electrophilicity of carbonyl C atom in ester group. The attack of the amino/amide N atom on carbonyl C of ester group results in cleavage of carbonyl C-O bond in polyester and formation of amide group. This strategy is also effective for aminolysis of poly(trimethylene glutarate) to glutarimides, and poly(1,4-butylene adipate) to caprolactone diimides.

Suggested Citation

  • Fengtian Wu & Yuepeng Wang & Yanfei Zhao & Shaojuan Zeng & Zhenpeng Wang & Minhao Tang & Wei Zeng & Ying Wang & Xiaoqian Chang & Junfeng Xiang & Zongbo Xie & Buxing Han & Zhimin Liu, 2024. "Upcycling poly(succinates) with amines to N-substituted succinimides over succinimide anion-based ionic liquids," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44892-1
    DOI: 10.1038/s41467-024-44892-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44892-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44892-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sai Bai & Peimei Da & Cheng Li & Zhiping Wang & Zhongcheng Yuan & Fan Fu & Maciej Kawecki & Xianjie Liu & Nobuya Sakai & Jacob Tse-Wei Wang & Sven Huettner & Stephan Buecheler & Mats Fahlman & Feng Ga, 2019. "Planar perovskite solar cells with long-term stability using ionic liquid additives," Nature, Nature, vol. 571(7764), pages 245-250, July.
    2. Fangyuan Wang & Zongpeng Zhang & Yu Chen & Virginie Ratovelomanana-Vidal & Peiyuan Yu & Gen-Qiang Chen & Xumu Zhang, 2022. "Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Raj, Tirath & Chandrasekhar, K. & Naresh Kumar, A. & Kim, Sang-Hyoun, 2022. "Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huihui Zhu & Ao Liu & Kyu In Shim & Haksoon Jung & Taoyu Zou & Youjin Reo & Hyunjun Kim & Jeong Woo Han & Yimu Chen & Hye Yong Chu & Jun Hyung Lim & Hyung-Jun Kim & Sai Bai & Yong-Young Noh, 2022. "High-performance hysteresis-free perovskite transistors through anion engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.
    3. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Benjamin Liu & Zihan Jia & Zhiliang Chen, 2024. "A Direct Chemical Approach to Mitigate Environment Lead Contamination in Perovskite Solar Cells," Energies, MDPI, vol. 17(7), pages 1-14, March.
    5. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Pietro Caprioglio & Joel A. Smith & Robert D. J. Oliver & Akash Dasgupta & Saqlain Choudhary & Michael D. Farrar & Alexandra J. Ramadan & Yen-Hung Lin & M. Greyson Christoforo & James M. Ball & Jonas , 2023. "Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Zhiyong Cui & Yutao Zhong & Zhijie Sun & Zhennan Jiang & Jingyu Deng & Qian Wang & Jens Nielsen & Jin Hou & Qingsheng Qi, 2023. "Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Issa M.Aziz, 2023. "A review of thin film solar cell," Technium, Technium Science, vol. 10(1), pages 6-13.
    10. Tong Wang & Jiabao Yang & Qi Cao & Xingyu Pu & Yuke Li & Hui Chen & Junsong Zhao & Yixin Zhang & Xingyuan Chen & Xuanhua Li, 2023. "Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Li, Linghao & Zheng, Xiaoen & Zhang, Fan & Yu, Haipeng & Wang, Hong & Jia, Zhiwen & Sun, Yan & Jiang, Enchen & Xu, Xiwei, 2023. "Formamide hydrothermal pretreatment assisted camellia shell for upgrading to N-containing chemical and supercapacitor electrode preparation using the residue," Energy, Elsevier, vol. 265(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44892-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.