IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics136403212100931x.html
   My bibliography  Save this article

The impact of learning and short-term experience on preferences for electric vehicles

Author

Listed:
  • Aravena, C.
  • Denny, E.

Abstract

The transport sector is a key contributor of global greenhouse gas emissions and electric vehicles have become a focus in striving to achieve decarbonisation and efficiency in the sector. This study uses a stated preference methodology, specifically choice experiments, to investigate the attitudes and preferences of potential buyers for a number of technical, environmental and policy attributes of electric vehicles in Ireland. We specifically focus on whether learning through provision of information and a brief vehicle experience affects preferences and welfare measures. Previous studies have examined the role of lengthy electric vehicle demonstration trials, for example 3 month trials, on preferences. This paper addresses a gap in the literature by considering the role of much shorter scale experience (minutes rather than months) on attitudes which more closely represents the experience that a potential purchaser will have at the point of investment. Using random parameter models, our results show that people are willing to pay more for certain technical and environmental features of electric vehicles, however, policy measures such as preferential parking rates are seen to have a non-significant effect on utility of participants. The learning process increases the significance of the environmental component, and produces significantly higher willingness to pay for increased battery range and vehicle size.

Suggested Citation

  • Aravena, C. & Denny, E., 2021. "The impact of learning and short-term experience on preferences for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s136403212100931x
    DOI: 10.1016/j.rser.2021.111656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100931X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Bahamonde-Birke, Francisco J., 2020. "Who will bell the cat? On the environmental and sustainability risks of electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 79-81.
    3. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    4. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    6. F Alpizar & F Carlsson & P Martinsson, 2003. "Using Choice Experiments for Non-Market Valuation," Economic Issues Journal Articles, Economic Issues, vol. 8(1), pages 83-110, March.
    7. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    8. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    9. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    11. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    12. Joseph C. Cooper & Michael Hanemann & Giovanni Signorello, 2002. "One-and-One-Half-Bound Dichotomous Choice Contingent Valuation," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 742-750, November.
    13. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    14. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    15. Charles R. Plott & Kathryn Zeiler, 2005. "The Willingness to Pay–Willingness to Accept Gap, the "Endowment Effect," Subject Misconceptions, and Experimental Procedures for Eliciting Valuations," American Economic Review, American Economic Association, vol. 95(3), pages 530-545, June.
    16. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, October.
    17. Cirillo, Cinzia & Liu, Yan & Maness, Michael, 2017. "A time-dependent stated preference approach to measuring vehicle type preferences and market elasticity of conventional and green vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 294-310.
    18. Skippon, Stephen M. & Kinnear, Neale & Lloyd, Louise & Stannard, Jenny, 2016. "How experience of use influences mass-market drivers’ willingness to consider a battery electric vehicle: A randomised controlled trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 26-42.
    19. Lopes, Mafalda Mendes & Moura, Filipe & Martinez, Luis M., 2014. "A rule-based approach for determining the plausible universe of electric vehicle buyers in the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 22-36.
    20. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    21. Bahamonde-Birke, Francisco, 2020. "Who will bell the cat? On the environmental and sustainability risks of electric vehicles: A rejoinder," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 358-360.
    22. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    23. Caulfield, Brian & Farrell, Séona & McMahon, Brian, 2010. "Examining individuals preferences for hybrid electric and alternatively fuelled vehicles," Transport Policy, Elsevier, vol. 17(6), pages 381-387, November.
    24. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    25. Claudia Aravena & W. George Hutchinson & Fredrik Carlsson & David I. Matthews, 2018. "Testing Preference Formation in Learning Design Contingent Valuation Using Advance Information and Repetitive Treatments," Land Economics, University of Wisconsin Press, vol. 94(2), pages 284-301.
    26. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    27. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zaoli & Li, Qin & Yan, Yamin & Shang, Wen-Long & Ochieng, Washington, 2022. "Examining influence factors of Chinese electric vehicle market demand based on online reviews under moderating effect of subsidy policy," Applied Energy, Elsevier, vol. 326(C).
    2. He, Jiaxin & Li, Jingyi & Zhao, Daiqing & Chen, Xing, 2022. "Does oil price affect corporate innovation? Evidence from new energy vehicle enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Peng, Qiao & Liu, Weilong & Zhang, Yong & Zeng, Shihong & Graham, Byron, 2023. "Generation planning for power companies with hybrid production technologies under multiple renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Tan, Yang & Fukuda, Hiroatsu & Li, Zhang & Wang, Shuai & Gao, Weijun & Liu, Zhonghui, 2022. "Does the public support the construction of battery swapping station for battery electric vehicles? - Data from Hangzhou, China," Energy Policy, Elsevier, vol. 163(C).
    5. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    6. Grangeia, Carolina & Santos, Luan & Ferreira, Daniel Viana & Guimarães, Raphael & de Magalhães Ozorio, Luiz & Tavares, Arthur, 2023. "Energy transition scenarios in the transportation sector in Brazil: Contributions from the electrical mobility," Energy Policy, Elsevier, vol. 174(C).
    7. Meilinda Fitriani Nur Maghfiroh & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2021. "Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    2. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    3. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.
    4. Rahmani, Djamel & Loureiro, Maria L., 2019. "Assessing drivers’ preferences for hybrid electric vehicles (HEV) in Spain," Research in Transportation Economics, Elsevier, vol. 73(C), pages 89-97.
    5. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    6. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    8. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    9. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    10. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    12. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Yongyou Nie & Enci Wang & Qinxin Guo & Junyi Shen, 2018. "Examining Shanghai Consumer Preferences for Electric Vehicles and Their Attributes," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    14. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    15. Elnaz Abotalebi & Mark R. Ferguson & Moataz Mohamed & Darren M. Scott, 2020. "Design of a survey to assess prospects for consumer electric mobility in Canada: a retrospective appraisal," Transportation, Springer, vol. 47(3), pages 1223-1250, June.
    16. Charu Grover & Sangeeta Bansal & Adan L. Martinez-Cruz, "undated". "Influence of Social Network Effect and Incentive on Choice of Star Labeled Cars in India: A Latent Class Approach based on Choice Experiment," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-05, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    17. Li, Wenbo & Long, Ruyin & Chen, Hong & Yang, Tong & Geng, Jichao & Yang, Muyi, 2018. "Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China," Applied Energy, Elsevier, vol. 209(C), pages 478-488.
    18. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    19. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    20. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.

    More about this item

    Keywords

    Choice experiment; Electric vehicles; Ireland; Learning and experience effect; Price vector; Stable preferences;
    All these keywords.

    JEL classification:

    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • R49 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s136403212100931x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.