IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics1364032121006614.html
   My bibliography  Save this article

Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide

Author

Listed:
  • Xiao, Shuai
  • Fu, Qian
  • Li, Zhuo
  • Li, Jun
  • Zhang, Liang
  • Zhu, Xun
  • Liao, Qiang

Abstract

The shortage of fossil fuels and extensive environmental pollution force the development of renewable energy. To address these problems, converting solar energy to valuable fuels and chemicals by photosynthesis is thought to be a promising and prospective approach. However, the low solar energy conversion efficiency of natural photosynthesis and the poor selectivity of current artificial photosynthesis technologies significantly limit the development of solar-to-chemicals conversion. Recently, solar-driven biological inorganic hybrid systems, which integrate biological catalysts with the inorganic light-harvesting components, are proposed to overcome the limitations of artificial and natural photosynthesis. This review presents recent progress and accomplishment of the hybrid systems for the production of organic fuels and chemicals from carbon dioxide. Firstly, we introduce the working principles of three typical hybrid systems, including photovoltaic-driven biological inorganic system, microbial photoelectrochemical system, and photosensitized biological inorganic system. Then, to deeply understand the interaction between microorganisms and inorganic materials, we discuss the charge transfer between microorganisms and inorganic materials. Moreover, to improve the interaction between microorganisms and inorganic materials, the surficial morphological and chemical modification of the inorganic materials are proposed to promote the adherence of microorganisms and the charge transfer between microorganisms and inorganic materials. Finally, we discuss the current challenges for the development of the hybrid systems.

Suggested Citation

  • Xiao, Shuai & Fu, Qian & Li, Zhuo & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121006614
    DOI: 10.1016/j.rser.2021.111375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    2. Marcel Schreier & Laura Curvat & Fabrizio Giordano & Ludmilla Steier & Antonio Abate & Shaik M. Zakeeruddin & Jingshan Luo & Matthew T. Mayer & Michael Grätzel, 2015. "Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    3. Jafary, Tahereh & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Kim, Byung Hong & Md Jahim, Jamaliah & Ismail, Manal & Lim, Swee Su, 2015. "Biocathode in microbial electrolysis cell; present status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 23-33.
    4. Marcel Schreier & Florent Héroguel & Ludmilla Steier & Shahzada Ahmad & Jeremy S. Luterbacher & Matthew T. Mayer & Jingshan Luo & Michael Grätzel, 2017. "Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO," Nature Energy, Nature, vol. 2(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Liangdong & Ma, Longlong & Hu, Guangzhi & Zhang, Wenjie & Liu, Ying & Xu, Rui & Ge, Wen & Chen, Yubao, 2022. "Utilization of illumination and thermal field in the preparation of jet–fuel components: The photothermic catalysis of Jatropha oil over the M/TiO2–HZSM–5," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    2. Ki Nam Kim & Sung Hyun Lee & Hwapyong Kim & Young Ho Park & Su-Il In, 2018. "Improved Microbial Electrolysis Cell Hydrogen Production by Hybridization with a TiO 2 Nanotube Array Photoanode," Energies, MDPI, vol. 11(11), pages 1-13, November.
    3. Agliuzza, Matteo & Mezza, Alessio & Sacco, Adriano, 2023. "Solar-driven integrated carbon capture and utilization: Coupling CO2 electroreduction toward CO with capture or photovoltaic systems," Applied Energy, Elsevier, vol. 334(C).
    4. He, Yuting & Li, Jun & Zhang, Liang & Zhu, Xun & Fu, Qian & Pang, Yuan & Liao, Qiang, 2024. "Nano zero-valent iron functioned 3D printing graphene aerogel electrode for efficient solar-driven biocatalytic methane production," Renewable Energy, Elsevier, vol. 224(C).
    5. Yuming Wang & Yi Li & Longfei Wang & Wenlong Zhang & Thomas Bürgi, 2023. "Bio-Coated Graphitic Carbon Nitrides for Enhanced Nitrobenzene Degradation: Roles of Extracellular Electron Transfer," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    6. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    7. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    8. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    9. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    10. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    11. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    12. Xianshu Liu & Jie Ding & Nanqi Ren & Qingyue Tong & Luyan Zhang, 2016. "The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    13. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    14. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    16. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    17. Jieni Fu & Weidong Zhu & Xiangmei Liu & Chunyong Liang & Yufeng Zheng & Zhaoyang Li & Yanqin Liang & Dong Zheng & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2021. "Self-activating anti-infection implant," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Hassan, Sedky H.A. & el Nasser A. Zohri, Abd & Kassim, Rehab M.F., 2019. "Electricity generation from sugarcane molasses using microbial fuel cell technologies," Energy, Elsevier, vol. 178(C), pages 538-543.
    19. Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
    20. Qi, Lijuan & Wu, Jiansong & Chen, Ye & Wen, Qing & Xu, Haitao & Wang, Yuyang, 2020. "Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells," Renewable Energy, Elsevier, vol. 156(C), pages 1325-1335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121006614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.