IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922016397.html
   My bibliography  Save this article

Elucidating the impact of power interruptions on microbial electromethanogenesis

Author

Listed:
  • Pelaz, Guillermo
  • González, Rubén
  • Morán, Antonio
  • Escapa, Adrián

Abstract

The need to accommodate power fluctuations intrinsic to high-renewable systems will demand in the future the implementation of large quantities of energy storage capacity. Microbial electromethanogenesis (EM) can potentially absorb the excess of renewable energy and store it as CH₄. However, it is still unknown how power fluctuations impact on the performance of EM systems. In this study, power gaps from 24 to 96 h were applied to two 0.5 L EM reactors to assess the effect of power interruptions on current density, methane production and current conversion efficiency. In addition, the cathodes were operated with and without external H₂ supplementation during the power-off periods to analyse how power outages affect the two main metabolic stages of the EM (i.e.: the hydrogenic and methanogenic steps).

Suggested Citation

  • Pelaz, Guillermo & González, Rubén & Morán, Antonio & Escapa, Adrián, 2023. "Elucidating the impact of power interruptions on microbial electromethanogenesis," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016397
    DOI: 10.1016/j.apenergy.2022.120382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922016397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jafary, Tahereh & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Kim, Byung Hong & Md Jahim, Jamaliah & Ismail, Manal & Lim, Swee Su, 2015. "Biocathode in microbial electrolysis cell; present status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 23-33.
    2. Yang, Hou-Yun & Wang, Yi-Xuan & He, Chuan-Shu & Qin, Yuan & Li, Wen-Qiang & Li, Wei-Hua & Mu, Yang, 2020. "Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide," Applied Energy, Elsevier, vol. 274(C).
    3. Zhou, Huihui & Xing, Defeng & Xu, Mingyi & Su, Yanyan & Zhang, Yifeng, 2020. "Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Wu, Benteng & Lin, Richen & Kang, Xihui & Deng, Chen & Dobson, Alan D.W. & Murphy, Jerry D., 2021. "Improved robustness of ex-situ biological methanation for electro-fuel production through the addition of graphene," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    4. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    5. Yadav, Ashish & Verma, Nishith, 2019. "Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell," Renewable Energy, Elsevier, vol. 138(C), pages 628-638.
    6. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    8. He, Yuting & Li, Jun & Zhang, Liang & Zhu, Xun & Fu, Qian & Pang, Yuan & Liao, Qiang, 2024. "Nano zero-valent iron functioned 3D printing graphene aerogel electrode for efficient solar-driven biocatalytic methane production," Renewable Energy, Elsevier, vol. 224(C).
    9. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    10. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    11. Xiao, Shuai & Fu, Qian & Li, Zhuo & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Bian, Bin & Shi, Le & Katuri, Krishna P. & Xu, Jiajie & Wang, Peng & Saikaly, Pascal E., 2020. "Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode," Applied Energy, Elsevier, vol. 278(C).
    13. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    14. Raúl Mateos & Ana Sotres & Raúl M. Alonso & Antonio Morán & Adrián Escapa, 2019. "Enhanced CO 2 Conversion to Acetate through Microbial Electrosynthesis (MES) by Continuous Headspace Gas Recirculation," Energies, MDPI, vol. 12(17), pages 1-13, August.
    15. Wei, Yufang & Zhao, Hongbing & Qi, Xuejiao & Yang, Tianxue & Zhang, Junping & Chen, Wangmi & Li, Mingxiao & Xi, Beidou, 2023. "Direct interspecies electron transfer stimulated by coupling of modified anaerobic granular sludge with microbial electrolysis cell for biogas production enhancement," Applied Energy, Elsevier, vol. 341(C).
    16. Ki Nam Kim & Sung Hyun Lee & Hwapyong Kim & Young Ho Park & Su-Il In, 2018. "Improved Microbial Electrolysis Cell Hydrogen Production by Hybridization with a TiO 2 Nanotube Array Photoanode," Energies, MDPI, vol. 11(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.