IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27217-4.html
   My bibliography  Save this article

Self-activating anti-infection implant

Author

Listed:
  • Jieni Fu

    (Tianjin University)

  • Weidong Zhu

    (Hebei University of Technology
    Hubei University)

  • Xiangmei Liu

    (Hebei University of Technology)

  • Chunyong Liang

    (Hebei University of Technology)

  • Yufeng Zheng

    (Peking University)

  • Zhaoyang Li

    (Tianjin University)

  • Yanqin Liang

    (Tianjin University)

  • Dong Zheng

    (Huazhong University of Science and Technology)

  • Shengli Zhu

    (Tianjin University)

  • Zhenduo Cui

    (Tianjin University)

  • Shuilin Wu

    (Tianjin University
    Hubei University)

Abstract

Clinically, it is difficult to endow implants with excellent osteogenic ability and antibacterial activity simultaneously. Herein, the self-activating implants modified with hydroxyapatite (HA)/MoS2 coating are designed to prevent Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infections and accelerate bone regeneration simultaneously. The electron transfer between bacteria and HA/MoS2 is triggered when bacteria contacted with the material. RNA sequencing data reveals that the expression level of anaerobic respiration–related genes is up-regulated and the expression level of aerobic respiration–related genes is down-regulated when bacteria adhere to the implants. HA/MoS2 presents a highly effective antibacterial efficacy against both S. aureus and E. coli because of bacterial respiration–activated metabolic pathway changes. Meanwhile, this coating promotes the osteoblastic differentiation of mesenchymal stem cells by altering the potentials of cell membrane and mitochondrial membrane. The proposed strategy exhibits great potential to endow implants with self-activating anti-infection performance and osteogenic ability simultaneously.

Suggested Citation

  • Jieni Fu & Weidong Zhu & Xiangmei Liu & Chunyong Liang & Yufeng Zheng & Zhaoyang Li & Yanqin Liang & Dong Zheng & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2021. "Self-activating anti-infection implant," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27217-4
    DOI: 10.1038/s41467-021-27217-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27217-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27217-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanli Huang & Xufeng Wan & Qiang Su & Chunlin Zhao & Jian Cao & Yan Yue & Shuoyuan Li & Xiaoting Chen & Jie Yin & Yi Deng & Xianzeng Zhang & Tianmin Wu & Zongke Zhou & Duan Wang, 2024. "Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    2. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    3. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    4. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
    6. Qi, Lijuan & Wu, Jiansong & Chen, Ye & Wen, Qing & Xu, Haitao & Wang, Yuyang, 2020. "Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells," Renewable Energy, Elsevier, vol. 156(C), pages 1325-1335.
    7. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    8. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.
    9. Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
    10. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    11. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. María José De La Fuente & Carlos Gallardo-Bustos & Rodrigo De la Iglesia & Ignacio T. Vargas, 2022. "Microbial Electrochemical Technologies for Sustainable Nitrogen Removal in Marine and Coastal Environments," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    13. Guo, Xuan & Zhan, Yali & Chen, Chunmao & Cai, Bin & Wang, Yu & Guo, Shaohui, 2016. "Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel," Renewable Energy, Elsevier, vol. 87(P1), pages 437-444.
    14. Giangeri, Ginevra & Tsapekos, Panagiotis & Gaspari, Maria & Ghofrani-Isfahani, Parisa & Treu, Laura & Kougias, Panagiotis & Campanaro, Stefano & Angelidaki, Irini, 2024. "A bioaugmentation strategy to recover methane production under sulfate-stressed conditions: Highlights on targeted sulfate-reducing bacteria and DIET-related species," Applied Energy, Elsevier, vol. 362(C).
    15. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Yuming Wang & Yi Li & Longfei Wang & Wenlong Zhang & Thomas Bürgi, 2023. "Bio-Coated Graphitic Carbon Nitrides for Enhanced Nitrobenzene Degradation: Roles of Extracellular Electron Transfer," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    17. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    18. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    19. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    20. Xianshu Liu & Jie Ding & Nanqi Ren & Qingyue Tong & Luyan Zhang, 2016. "The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells," IJERPH, MDPI, vol. 13(12), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27217-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.