IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004500.html
   My bibliography  Save this article

Beyond-carbon materials for potassium ion energy-storage devices

Author

Listed:
  • Zhong, Fulan
  • Wang, Yijun
  • Li, Guilan
  • Huang, Chuyun
  • Xu, Anding
  • Lin, Changrong
  • Xu, Zhiguang
  • Yan, Yurong
  • Wu, Songping

Abstract

Potassium-ion energy-storage devices have established themselves as the most important candidates for next-generation energy-storage devices in the coming future. Recently, inorganic electrode materials have riveted ever-increasing interest due to large theoretical capacity, rich sources, low price and environmental friendly advantages. However, the electrode materials of potassium-containing devices have been suffering low theoretical capacity, poor rate performance and short lifespan due to integration effects of seriously electrochemical pulverization and slow kinetics. In this timely review, we will focus on the latest progress of potassium ion energy storage devices based on beyond-carbon materials, referring to the synthesis of materials and the construction of microstructure, material component-oriented electrochemical performance, energy storage mechanism discussion, newfangled device assembly and key components. The key materials and novel theories are reviewed, and some personal viewpoints have been proposed, targeting providing some inductive opinions.

Suggested Citation

  • Zhong, Fulan & Wang, Yijun & Li, Guilan & Huang, Chuyun & Xu, Anding & Lin, Changrong & Xu, Zhiguang & Yan, Yurong & Wu, Songping, 2021. "Beyond-carbon materials for potassium ion energy-storage devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004500
    DOI: 10.1016/j.rser.2021.111161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wojciech Kopec & Brad S. Rothberg & Bert L. Groot, 2019. "Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Zhenyou Li & Xiaoke Mu & Zhirong Zhao-Karger & Thomas Diemant & R. Jürgen Behm & Christian Kübel & Maximilian Fichtner, 2018. "Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Yang Xu & Chenglin Zhang & Min Zhou & Qun Fu & Chengxi Zhao & Minghong Wu & Yong Lei, 2018. "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lea C. Neelsen & Elena B. Riel & Susanne Rinné & Freya-Rebecca Schmid & Björn C. Jürs & Mauricio Bedoya & Jan P. Langer & Bisher Eymsh & Aytug K. Kiper & Sönke Cordeiro & Niels Decher & Thomas Baukrow, 2024. "Ion occupancy of the selectivity filter controls opening of a cytoplasmic gate in the K2P channel TALK-2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    3. Lee, Seung Jun & Theerthagiri, Jayaraman & Nithyadharseni, Palaniyandy & Arunachalam, Prabhakarn & Balaji, Dhandapani & Madan Kumar, Arumugam & Madhavan, Jagannathan & Mittal, Vikas & Choi, Myong Yong, 2021. "Heteroatom-doped graphene-based materials for sustainable energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Hongbo Ding & Jue Wang & Jiang Zhou & Chengxin Wang & Bingan Lu, 2023. "Building electrode skins for ultra-stable potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ananyo Roy & Mohsen Sotoudeh & Sirshendu Dinda & Yushu Tang & Christian Kübel & Axel Groß & Zhirong Zhao-Karger & Maximilian Fichtner & Zhenyou Li, 2024. "Improving rechargeable magnesium batteries through dual cation co-intercalation strategy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Ahmed Rohaim & Bram J. A. Vermeulen & Jing Li & Felix Kümmerer & Federico Napoli & Lydia Blachowicz & João Medeiros-Silva & Benoît Roux & Markus Weingarth, 2022. "A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Berke Türkaydin & Marcus Schewe & Elena Barbara Riel & Friederike Schulz & Johann Biedermann & Thomas Baukrowitz & Han Sun, 2024. "Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Adam Lewis & Vilius Kurauskas & Marco Tonelli & Katherine Henzler-Wildman, 2021. "Ion-dependent structure, dynamics, and allosteric coupling in a non-selective cation channel," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Borys, Przemysław & Trybek, Paulina & Dworakowska, Beata & Sekrecka-Belniak, Anna & Nurowska, Ewa & Bednarczyk, Piotr & Wawrzkiewicz-Jałowiecka, Agata, 2024. "Selectivity filter conductance, rectification and fluctuations of subdomains—How can this all relate to the value of Hurst exponent in the dwell-times of ion channels states?," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Elizabeth A. Moore & Callie W. Babbitt & Brian Tomaszewski & Anna Christina Tyler, 2020. "Spatial perspectives enhance modeling of nanomaterial risks," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 855-870, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.