IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38065-9.html
   My bibliography  Save this article

Building electrode skins for ultra-stable potassium metal batteries

Author

Listed:
  • Hongbo Ding

    (Hunan University)

  • Jue Wang

    (Central South University)

  • Jiang Zhou

    (Central South University)

  • Chengxin Wang

    (Sun Yat-sen (Zhongshan) University)

  • Bingan Lu

    (Hunan University)

Abstract

In nature, the human body is a perfect self-organizing and self-repairing system, with the skin protecting the internal organs and tissues from external damages. In this work, inspired by the human skin, we design a metal electrode skin (MES) to protect the metal interface. MES can increase the flatness of electrode and uniform the electric field distribution, inhibiting the growth of dendrites. In detail, an artificial film made of fluorinated graphene oxide serves as the first protection layer. At molecular level, fluorine is released and in-situ formed a robust SEI as the second protection “skin” for metal anode. As a result, Cu@MES | | K asymmetric cell is able to achieve an unprecedented cycle life (over 1600 cycles). More impressively, the full cell of K@MES | | Prussian blue exhibits a long cycle lifespan over 5000 cycles. This work illustrates a mechanism for metal electrode protection and provides a strategy for the applying bionics in batteries.

Suggested Citation

  • Hongbo Ding & Jue Wang & Jiang Zhou & Chengxin Wang & Bingan Lu, 2023. "Building electrode skins for ultra-stable potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38065-9
    DOI: 10.1038/s41467-023-38065-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38065-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38065-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zongjie Sun & Kai Xi & Jing Chen & Amor Abdelkader & Meng-Yang Li & Yuanyuan Qin & Yue Lin & Qiu Jiang & Ya-Qiong Su & R. Vasant Kumar & Shujiang Ding, 2022. "Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Siwu Li & Haolin Zhu & Yuan Liu & Zhilong Han & Linfeng Peng & Shuping Li & Chuang Yu & Shijie Cheng & Jia Xie, 2022. "Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yang Xu & Chenglin Zhang & Min Zhou & Qun Fu & Chengxi Zhao & Minghong Wu & Yong Lei, 2018. "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    2. Elizabeth A. Moore & Callie W. Babbitt & Brian Tomaszewski & Anna Christina Tyler, 2020. "Spatial perspectives enhance modeling of nanomaterial risks," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 855-870, August.
    3. Zhong, Fulan & Wang, Yijun & Li, Guilan & Huang, Chuyun & Xu, Anding & Lin, Changrong & Xu, Zhiguang & Yan, Yurong & Wu, Songping, 2021. "Beyond-carbon materials for potassium ion energy-storage devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Lee, Seung Jun & Theerthagiri, Jayaraman & Nithyadharseni, Palaniyandy & Arunachalam, Prabhakarn & Balaji, Dhandapani & Madan Kumar, Arumugam & Madhavan, Jagannathan & Mittal, Vikas & Choi, Myong Yong, 2021. "Heteroatom-doped graphene-based materials for sustainable energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38065-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.