IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i4p855-870.html
   My bibliography  Save this article

Spatial perspectives enhance modeling of nanomaterial risks

Author

Listed:
  • Elizabeth A. Moore
  • Callie W. Babbitt
  • Brian Tomaszewski
  • Anna Christina Tyler

Abstract

Novel engineered nanomaterials (ENMs) are increasingly being manufactured and integrated into renewable energy generation and storage technologies. Past research estimated the potential impact of this increased demand on environmental systems, due to both the life cycle impact of ENM production and the potential for their direct release into ecosystems. However, many models treat ENM production and use as spatially implicit, without considering the specific geographic location of potential emissions. By not considering geographical context, ENM accumulation or impact may be underestimated. Here, we introduce an integrated predictive model that forecasts likely ENM manufacturing locations and potential emissions to the environment, with a focus on critical environmental areas and freshwater ecosystems. Spatially explicit ENM concentrations are estimated for four case study ENMs that have promising application in lithium‐ion battery production. Results demonstrate that potential ENM exposure from manufacturing locations within buffer zones of sensitive ecosystems would accumulate to levels associated with measured ecotoxicity risk under high release scenarios, underscoring the importance of adding a spatial and temporal perspective to life cycle toxicity impact assessment. This predictive integrated modeling approach is novel to the nanomaterial literature and can be adapted to other regions and material case studies to proactively inform life cycle tradeoffs and decision‐making.

Suggested Citation

  • Elizabeth A. Moore & Callie W. Babbitt & Brian Tomaszewski & Anna Christina Tyler, 2020. "Spatial perspectives enhance modeling of nanomaterial risks," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 855-870, August.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:4:p:855-870
    DOI: 10.1111/jiec.12976
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12976
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sharma, B. & Birrell, S. & Miguez, F.E., 2017. "Spatial modeling framework for bioethanol plant siting and biofuel production potential in the U.S," Applied Energy, Elsevier, vol. 191(C), pages 75-86.
    2. Ming Xu & Hua Cai & Sai Liang, 2015. "Big Data and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 205-210, April.
    3. Susie Ruqun Wu & Xiaomeng Li & Defne Apul & Victoria Breeze & Ying Tang & Yi Fan & Jiquan Chen, 2017. "Agent†Based Modeling of Temporal and Spatial Dynamics in Life Cycle Sustainability Assessment," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1507-1521, December.
    4. Yang Xu & Chenglin Zhang & Min Zhou & Qun Fu & Chengxi Zhao & Minghong Wu & Yong Lei, 2018. "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Jeroen B. Guinée & Reinout Heijungs, 2011. "Life Cycle Sustainability Analysis," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 656-658, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Eléonore Loiseau, 2019. "Coupling economic models and environmental assessment methods to support regional policies : A critical review," Post-Print hal-02021423, HAL.
    2. Magdalena Rusch & Josef‐Peter Schöggl & Rupert J. Baumgartner, 2023. "Application of digital technologies for sustainable product management in a circular economy: A review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1159-1174, March.
    3. Handi Chandra‐Putra & Clinton J. Andrews, 2020. "An integrated model of real estate market responses to coastal flooding," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 424-435, April.
    4. Peter Horton & Steve A. Banwart & Dan Brockington & Garrett W. Brown & Richard Bruce & Duncan Cameron & Michelle Holdsworth & S. C. Lenny Koh & Jurriaan Ton & Peter Jackson, 2017. "An agenda for integrated system-wide interdisciplinary agri-food research," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 195-210, April.
    5. Erling Holden & Geoffrey Gilpin, 2013. "Biofuels and Sustainable Transport: A Conceptual Discussion," Sustainability, MDPI, vol. 5(7), pages 1-21, July.
    6. Yupeng Liu & Wei-Qiang Chen & Tao Lin & Lijie Gao, 2019. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?," Resources, MDPI, vol. 8(1), pages 1-8, March.
    7. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    8. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    9. Ramos, Ana & Rouboa, Abel, 2022. "Life cycle thinking of plasma gasification as a waste-to-energy tool: Review on environmental, economic and social aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Sabine Langkau & Martin Erdmann, 2021. "Environmental impacts of the future supply of rare earths for magnet applications," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1034-1050, August.
    11. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    12. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    13. Jayarathna, Lasinidu & Kent, Geoff & O’Hara, Ian & Hobson, Philip, 2022. "Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia," Land Use Policy, Elsevier, vol. 114(C).
    14. J. Raimbault & J. Broere & M. Somveille & J. M. Serna & E. Strombom & C. Moore & B. Zhu & L. Sugar, 2020. "A spatial agent based model for simulating and optimizing networked eco-industrial systems," Papers 2003.14133, arXiv.org.
    15. Maryam Roudneshin & Amanda Sosa, 2024. "Optimising Agricultural Waste Supply Chains for Sustainable Bioenergy Production: A Comprehensive Literature Review," Energies, MDPI, vol. 17(11), pages 1-24, May.
    16. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2023. "A consequential approach to life cycle sustainability assessment with an agent‐based model to determine the potential contribution of chemical recycling to UN Sustainable Development Goals," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 726-745, June.
    17. Franco Donati & Sébastien M. R. Dente & Chen Li & Xaysackda Vilaysouk & Andreas Froemelt & Rohit Nishant & Gang Liu & Arnold Tukker & Seiji Hashimoto, 2022. "The future of artificial intelligence in the context of industrial ecology," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1175-1181, August.
    18. Zhong, Fulan & Wang, Yijun & Li, Guilan & Huang, Chuyun & Xu, Anding & Lin, Changrong & Xu, Zhiguang & Yan, Yurong & Wu, Songping, 2021. "Beyond-carbon materials for potassium ion energy-storage devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Lee, Seung Jun & Theerthagiri, Jayaraman & Nithyadharseni, Palaniyandy & Arunachalam, Prabhakarn & Balaji, Dhandapani & Madan Kumar, Arumugam & Madhavan, Jagannathan & Mittal, Vikas & Choi, Myong Yong, 2021. "Heteroatom-doped graphene-based materials for sustainable energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:4:p:855-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.