IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032120308807.html
   My bibliography  Save this article

Life cycle assessment of power batteries used in electric bicycles in China

Author

Listed:
  • Liu, Wenqiu
  • Liu, He
  • Liu, Wei
  • Cui, Zhaojie

Abstract

China has the largest number of electric bicycles (EBs) in the world; they use a considerable amount of batteries. Lead-acid batteries (LABs) are being gradually replaced with lithium-ion batteries (LIBs) in these EBs. It is necessary to explore the environmental impact of these batteries in China. This study quantified the full life cycle environmental performance of LABs (lead-antimony-cadmium, Pb–Sb–Cd, and lead-tin-calcium, Pb–Sn–Ca) and LIBs (lithium-nickel-cobalt-manganese, NCM, and lithium-iron-phosphate, LFP) through the life cycle assessment methodology. The results showed that the material extraction and processing and the battery use stages were the main processes that affected the overall environmental performance. The battery manufacturing and transportation stages had a negligible environmental impact, whereas the battery recycling could increase the environmental benefits of batteries. However, the environmental contribution of the end-of-life (EOL) stage of LIBs was not as good as LABs, especially for LFP batteries. Overall, LFP batteries had better environmental performance except for the highest carcinogenic human toxicity potentials caused by the Cr (VI) discharge from the copper production. Pb–Sn–Ca batteries had the lowest toxic potential to humans and water because of the use of cadmium-free technology. The advantages of NCM batteries over LABs were not obvious currently but had great potential for improvement. Scenarios for cycle life, recycling rate, echelon utilization, and repair and reuse of batteries were established to analyze opportunities to reduce the environmental impact of batteries. Then, several implications were proposed for the development of technology for batteries in EBs.

Suggested Citation

  • Liu, Wenqiu & Liu, He & Liu, Wei & Cui, Zhaojie, 2021. "Life cycle assessment of power batteries used in electric bicycles in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308807
    DOI: 10.1016/j.rser.2020.110596
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    2. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    3. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    4. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    5. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    6. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    7. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brindha Ramasubramanian & Rayavarapu Prasada Rao & Vijila Chellappan & Seeram Ramakrishna, 2022. "Towards Sustainable Fuel Cells and Batteries with an AI Perspective," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
    2. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Ecer, Fatih & Küçükönder, Hande & Kayapınar Kaya, Sema & Faruk Görçün, Ömer, 2023. "Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    4. Petr Bača & Petr Vanýsek, 2023. "Issues Concerning Manufacture and Recycling of Lead," Energies, MDPI, vol. 16(11), pages 1-20, June.
    5. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    4. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    7. Cox, Brian L. & Mutel, Christopher L., 2018. "The environmental and cost performance of current and future motorcycles," Applied Energy, Elsevier, vol. 212(C), pages 1013-1024.
    8. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    10. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    12. Alegre, C. & Modica, E. & Di Blasi, A. & Di Blasi, O. & Busacca, C. & Ferraro, M. & Aricò, A.S. & Antonucci, V. & Baglio, V., 2018. "NiCo-loaded carbon nanofibers obtained by electrospinning: Bifunctional behavior as air electrodes," Renewable Energy, Elsevier, vol. 125(C), pages 250-259.
    13. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).
    15. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).
    17. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    18. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Lawrence Fulton, 2020. "A Publicly Available Simulation of Battery Electric, Hybrid Electric, and Gas-Powered Vehicles," Energies, MDPI, vol. 13(10), pages 1-15, May.
    20. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.