IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16001-d989212.html
   My bibliography  Save this article

Towards Sustainable Fuel Cells and Batteries with an AI Perspective

Author

Listed:
  • Brindha Ramasubramanian

    (Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
    Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore)

  • Rayavarapu Prasada Rao

    (Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore)

  • Vijila Chellappan

    (Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore)

  • Seeram Ramakrishna

    (Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore)

Abstract

With growing environmental and ecological concerns, innovative energy storage systems are urgently required to develop smart grids and electric vehicles (EVs). Since their invention in the 1970s, rechargeable lithium-ion batteries (LIBs) have risen as a revolutionary innovation due to their superior benefits of high operating potential and energy density. Similarly, fuel cells, especially Proton Exchange Membrane Fuel Cells (PEMFC) and Solid-Oxide Fuel Cells (SOFC), have been developed as an energy storage system for EVs due to their compactness and high-temperature stability, respectively. Various attempts have been made to explore novel materials to enhance existing energy storage technologies. Materials design and development are significantly based on trial-and-error techniques and require substantial human effort and time. Additionally, researchers work on individual materials for specific applications. As a viewpoint, we present the available sustainable routes for electrochemical energy storage, highlighting the use of (i) green materials and processes, (ii) renewables, (iii) the circular economy approach, (iv) regulatory policies, and (v) the data driven approach to find the best materials from several databases with minimal human involvement and time. Finally, we provide an example of a high throughput and machine learning assisted approach for optimizing the properties of several sustainable carbon materials and applying them to energy storage devices. This study can prompt researchers to think, advance, and develop opportunities for future sustainable materials selection, optimization, and application in various electrochemical energy devices utilizing ML.

Suggested Citation

  • Brindha Ramasubramanian & Rayavarapu Prasada Rao & Vijila Chellappan & Seeram Ramakrishna, 2022. "Towards Sustainable Fuel Cells and Batteries with an AI Perspective," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16001-:d:989212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    3. Liu, Wenqiu & Liu, He & Liu, Wei & Cui, Zhaojie, 2021. "Life cycle assessment of power batteries used in electric bicycles in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Senthil, Chenrayan & Lee, Chang Woo, 2021. "Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    8. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Li, Yongdong, 2015. "Fault detection and isolation for Polymer Electrolyte Membrane Fuel Cell systems by analyzing cell voltage generated space," Applied Energy, Elsevier, vol. 148(C), pages 260-272.
    9. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    10. Roberto Fazioli & Francesca Pantaleone, 2021. "Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen," Energies, MDPI, vol. 14(23), pages 1-18, November.
    11. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    12. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    13. Roberto Fazioli & Francesca Pantaleone, 2021. "Macroeconomic factors influencing public policy strategies for Blue and Green Hydrogen," Working Papers 20210510, University of Ferrara, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariam, Ezrah & Ramasubramanian, Brindha & Sumedha Reddy, Vundrala & Dalapati, Goutam Kumar & Ghosh, Siddhartha & PA, Thanseeha Sherin & Chakrabortty, Sabyasachi & Motapothula, Mallikarjuna Rao & Kuma, 2024. "Emerging trends in cooling technologies for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    2. Francesca Pantaleone & Roberto Fazioli, 2022. "Lock-In Effects on the Energy Sector: Evidence from Hydrogen Patenting Activities," Energies, MDPI, vol. 15(9), pages 1-15, April.
    3. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jiang, Benben & Berliner, Marc D. & Lai, Kun & Asinger, Patrick A. & Zhao, Hongbo & Herring, Patrick K. & Bazant, Martin Z. & Braatz, Richard D., 2022. "Fast charging design for Lithium-ion batteries via Bayesian optimization," Applied Energy, Elsevier, vol. 307(C).
    5. Dillman, K.J. & Heinonen, J., 2022. "A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Ireneusz Miciuła & Henryk Wojtaszek & Bogdan Włodarczyk & Marek Szturo & Miłosz Gac & Jerzy Będźmirowski & Katarzyna Kazojć & Judyta Kabus, 2021. "The Current Picture of the Transition to a Green Economy in the EU—Trends in Climate and Energy Policy versus State Security," Energies, MDPI, vol. 14(23), pages 1-25, December.
    7. Jae-Eun Shin, 2022. "Hydrogen Technology Development and Policy Status by Value Chain in South Korea," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    10. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    11. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    12. Anggi Putri Kurniadi & Hasdi Aimon & Zamroni Salim & Ragimun Ragimun & Adang Sonjaya & Sigit Setiawan & Viktor Siagian & Lokot Zein Nasution & R Nurhidajat & Mutaqin Mutaqin & Joko Sabtohadi, 2024. "Analysis of Existing and Forecasting for Coal and Solar Energy Consumption on Climate Change in Asia Pacific: New Evidence for Sustainable Development Goals," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 352-359, July.
    13. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    14. Dugoua, Eugenie & Dumas, Marion, 2024. "Coordination dynamics between fuel cell and battery technologies in the transition to clean cars," LSE Research Online Documents on Economics 124029, London School of Economics and Political Science, LSE Library.
    15. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    17. Adelina Jashari & Jana Lippelt & Marie-Theres von Schickfus, 2018. "Unexpected Rapid Fall of Wind and Solar Energy Prices: Backgrounds, Effects and Perspectives," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 19(02), pages 65-69, July.
    18. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    19. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16001-:d:989212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.