IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120307577.html
   My bibliography  Save this article

Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods

Author

Listed:
  • Khomein, Piyachai
  • Ketelaars, Wesley
  • Lap, Tijs
  • Liu, Gao

Abstract

Sulfonated aromatic polymers (SAP) have been shown to be promising materials for proton exchange membranes (PEM) due to their high thermal and chemical stability as well as lower-cost production compared to commercial available perfluoro sulfonated polymers. Two key main steps to achieve high-performance PEM of SAP are sulfonation of the aromatic polymer and subsequent membrane crosslinking techniques. In this review, the common post-sulfonation methods for development of SAP and the state of the art crosslinking procedures are mostly covered. This review is targeting to bring the reader up to date of all available techniques. To obtain an overview is especially important, because no single sulfonation and/or crosslinking procedure can be considered ideal in all cases, and for each SAP the best method is dependent on the type of polymer and its applications.

Suggested Citation

  • Khomein, Piyachai & Ketelaars, Wesley & Lap, Tijs & Liu, Gao, 2021. "Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307577
    DOI: 10.1016/j.rser.2020.110471
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120307577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tawalbeh, Muhammad & Al-Othman, Amani & Ka'ki, Ahmad & Farooq, Afifa & Alkasrawi, Malek, 2022. "Lignin/zirconium phosphate/ionic liquids-based proton conducting membranes for high-temperature PEM fuel cells applications," Energy, Elsevier, vol. 260(C).
    2. Mark Robertson & Alejandro Guillen-Obando & Andrew Barbour & Paul Smith & Anthony Griffin & Zhe Qiang, 2023. "Direct synthesis of ordered mesoporous materials from thermoplastic elastomers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Vijai Kaarthi Visvanathan & Karthikeyan Palaniswamy & Dineshkumar Ponnaiyan & Mathan Chandran & Thanarajan Kumaresan & Jegathishkumar Ramasamy & Senthilarasu Sundaram, 2023. "Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    4. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    5. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    6. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    8. Norman Hendrik Riedel & Miroslav Špaček, 2022. "Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    9. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    10. Nadaleti, Willian Cézar & Gomes, Jeferson Peres, 2023. "Green hydrogen production from urban waste biogas: An analysis of the Brazilian potential and the process’ economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Dan-Adrian Mocanu & Viorel Bădescu & Ciprian Bucur & Iuliana Ștefan & Elena Carcadea & Maria Simona Răboacă & Ioana Manta, 2020. "PLC Automation and Control Strategy in a Stirling Solar Power System," Energies, MDPI, vol. 13(8), pages 1-19, April.
    12. Li, Jianwei & Yan, Chonghao & Yang, Qingqing & Hao, Dong & Zou, Weitao & Gao, Lei & Zhao, Xuan, 2023. "Quantitative diagnosis of PEMFC membrane humidity with a vector-distance based characteristic mapping approach," Applied Energy, Elsevier, vol. 335(C).
    13. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Lijun & Kumar, M. Saravana, 2023. "Design and optimization of a novel flash-binary-based hybrid system to produce power, cooling, freshwater, and liquid hydrogen," Energy, Elsevier, vol. 280(C).
    14. Istvan Vokony, 2021. "Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study," Clean Technol., MDPI, vol. 3(4), pages 1-15, September.
    15. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    16. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    17. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System," Energies, MDPI, vol. 13(2), pages 1-20, January.
    18. Mehroze Iqbal & Amel Benmouna & Frederic Claude & Mohamed Becherif, 2023. "Efficient and Reliable Power-Conditioning Stage for Fuel Cell-Based High-Power Applications," Energies, MDPI, vol. 16(13), pages 1-15, June.
    19. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.
    20. Nurul Waheeda Mazlan & Munirah Shafiqah Murat & Chung-Jen Tseng & Oskar Hasdinor Hassan & Nafisah Osman, 2022. "Lattice Expansion and Crystallite Size Analyses of NiO-BaCe 0. 54 Zr 0. 36 Y 0. 1 O 3-δ Anode Composite for Proton Ceramic Fuel Cells Application," Energies, MDPI, vol. 15(22), pages 1-10, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.