IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13520-d947336.html
   My bibliography  Save this article

Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry

Author

Listed:
  • Norman Hendrik Riedel

    (Department of Entrepreneurship, Faculty of Business Administration, Prague University of Economics and Business, 137 00 Prague, Czech Republic)

  • Miroslav Špaček

    (Department of Entrepreneurship, Faculty of Business Administration, Prague University of Economics and Business, 137 00 Prague, Czech Republic)

Abstract

The ongoing move toward carbon neutrality in Europe and, more recently, towards reducing Russian natural gas as an energy source poses a significant challenge to energy-intensive processes such as the German chemical industry. While many current research studies focus on the transformation of the electrical grid required for the transition to renewable energy sources and the related technical problems and market design, little research has been conducted on the practical feasibility and requirements of energy transformation in energy-intensive process industries. This publication addresses this gap using the projected future energy demand of the German chemical industry and simulation of its coverage by different renewable energy production scenarios using past data on power outputs from renewable energies. Ten-gigawatt offshore wind power installed without additional storage would reduce the natural gas consumption of inflexible large-scale processes in the German chemical industry by 63% or fossil energy consumption by 42%. Hydrogen energy storage has little effect unless employed at sizes comparable to the entire current German storage volume for natural gas. In consequence, while the substitution of fossil energies is technically feasible, the undertaking of reaching a high level of substitution is of a magnitude that makes the time frames currently set seem somewhat optimistic without massive reductions in energy consumption by shutting down large parts of the industry.

Suggested Citation

  • Norman Hendrik Riedel & Miroslav Špaček, 2022. "Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13520-:d:947336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    2. Ferguson-Cradler, Gregory, 2022. "Corporate strategy in the Anthropocene: German electricity utilities and the nuclear sudden stop," Ecological Economics, Elsevier, vol. 195(C).
    3. Kamlage, Jan-Hendrik & Drewing, Emily & Reinermann, Julia Lena & de Vries, Nicole & Flores, Marissa, 2020. "Fighting fruitfully? Participation and conflict in the context of electricity grid extension in Germany," Utilities Policy, Elsevier, vol. 64(C).
    4. Reusswig, Fritz & Braun, Florian & Heger, Ines & Ludewig, Thomas & Eichenauer, Eva & Lass, Wiebke, 2016. "Against the wind: Local opposition to the German Energiewende," Utilities Policy, Elsevier, vol. 41(C), pages 214-227.
    5. Renn, Ortwin & Marshall, Jonathan Paul, 2016. "Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”," Energy Policy, Elsevier, vol. 99(C), pages 224-232.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    8. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    9. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    10. Iwona Bąk & Anna Barwińska-Małajowicz & Grażyna Wolska & Paweł Walawender & Paweł Hydzik, 2021. "Is the European Union Making Progress on Energy Decarbonisation While Moving towards Sustainable Development?," Energies, MDPI, vol. 14(13), pages 1-18, June.
    11. Mohammad Ostadi & Kristofer Gunnar Paso & Sandra Rodriguez-Fabia & Lars Erik Øi & Flavio Manenti & Magne Hillestad, 2020. "Process Integration of Green Hydrogen: Decarbonization of Chemical Industries," Energies, MDPI, vol. 13(18), pages 1-16, September.
    12. Portman, Michelle E. & Duff, John A. & Köppel, Johann & Reisert, Jessica & Higgins, Megan E., 2009. "Offshore wind energy development in the exclusive economic zone: Legal and policy supports and impediments in Germany and the US," Energy Policy, Elsevier, vol. 37(9), pages 3596-3607, September.
    13. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    14. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    15. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    17. Florian Ahrens & Johann Land & Susan Krumdieck, 2022. "Decarbonization of Nitrogen Fertilizer: A Transition Engineering Desk Study for Agriculture in Germany," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    18. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    2. Olaf Kühne & Lara Koegst & Marie-Luise Zimmer & Greta Schäffauer, 2021. "“... Inconceivable, Unrealistic and Inhumane”. Internet Communication on the Flood Disaster in West Germany of July 2021 between Conspiracy Theories and Moralization—A Neopragmatic Explorative Study," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    3. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    4. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    5. Corinna Jenal & Sven Endreß & Olaf Kühne & Caroline Zylka, 2021. "Technological Transformation Processes and Resistance—On the Conflict Potential of 5G Using the Example of 5G Network Expansion in Germany," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    6. Yilmaz, Selin & Xu, Xiaojing & Cabrera, Daniel & Chanez, Cédric & Cuony, Peter & Patel, Martin K., 2020. "Analysis of demand-side response preferences regarding electricity tariffs and direct load control: Key findings from a Swiss survey," Energy, Elsevier, vol. 212(C).
    7. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    8. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    9. Michaelis, Anne & Hanny, Lisa & Körner, Marc-Fabian & Strüker, Jens & Weibelzahl, Martin, 2024. "Consumer-centric electricity markets: Six design principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
    11. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    12. Ediger, Volkan Ş. & Berk, Istemi, 2023. "Future availability of natural gas: Can it support sustainable energy transition?," Resources Policy, Elsevier, vol. 85(PA).
    13. Izabela Sówka & Sławomir Pietrowicz & Piotr Kolasiński, 2021. "Energy Processes, Systems and Equipment," Energies, MDPI, vol. 14(6), pages 1-4, March.
    14. Jacek Brożyna & Wadim Strielkowski & Alena Fomina & Natalya Nikitina, 2020. "Renewable Energy and EU 2020 Target for Energy Efficiency in the Czech Republic and Slovakia," Energies, MDPI, vol. 13(4), pages 1-20, February.
    15. Lim, Juin Yau & How, Bing Shen & Rhee, Gahee & Hwangbo, Soonho & Yoo, Chang Kyoo, 2020. "Transitioning of localized renewable energy system towards sustainable hydrogen development planning: P-graph approach," Applied Energy, Elsevier, vol. 263(C).
    16. Wojciech Drożdż & Grzegorz Kinelski & Marzena Czarnecka & Magdalena Wójcik-Jurkiewicz & Anna Maroušková & Grzegorz Zych, 2021. "Determinants of Decarbonization—How to Realize Sustainable and Low Carbon Cities?," Energies, MDPI, vol. 14(9), pages 1-19, May.
    17. Körner, Marc-Fabian & Sedlmeir, Johannes & Weibelzahl, Martin & Fridgen, Gilbert & Heine, Moreen & Neumann, Christoph, 2022. "Systemic risks in electricity systems: A perspective on the potential of digital technologies," Energy Policy, Elsevier, vol. 164(C).
    18. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    19. Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.
    20. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13520-:d:947336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.