IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120306833.html
   My bibliography  Save this article

Potential changes in GHG emissions arising from the introduction of biorefineries combining biofuel and electrofuel production within the European Union – A location specific assessment

Author

Listed:
  • Buchspies, Benedikt
  • Kaltschmitt, Martin
  • Neuling, Ulf

Abstract

In the upcoming decade, biofuels made from agricultural residues, wastes and by-products will most likely present an integral part of biofuel provision to achieve greenhouse gas (GHG) reduction targets. This study provides an evaluation of potential changes in GHG emissions arising from the introduction of alternative fuels. To this end, potential changes in GHG emissions arising from the introduction of 36 biorefinery configurations in 26 EU member states providing a broad spectrum of products (e.g. biofuels, chemicals, feed and food additives) are assessed. Additional electrofuel production using biogenic CO2 is evaluated. The assessment considers country specific energy supply, market conditions and soil characteristics. The potential changes in GHG emissions arising from the introduction of these facilities range from −206 to 135 and from −221 to −17 g CO2 per MJ of bioethanol provided from wheat grains and wheat straw, respectively. The analysis reveals a high variability in GHG intensities related to marginal feedstock and energy supply as well as potentially occurring displacement effects depending on location. A Monte Carlo simulation confirms potential reductions in GHG emissions. Furthermore, the analysis shows that the methodology used within the EU to evaluate GHG emissions provided by the Renewable Energy Directive (II) denies market access to certain types of biorefineries and production modalities that bear the potential to reduce GHG emissions. It is concluded that EU biofuel policy strategies targeting (advanced) biofuels should consider local conditions and markets and should especially pay attention to potential changes in other markets.

Suggested Citation

  • Buchspies, Benedikt & Kaltschmitt, Martin & Neuling, Ulf, 2020. "Potential changes in GHG emissions arising from the introduction of biorefineries combining biofuel and electrofuel production within the European Union – A location specific assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306833
    DOI: 10.1016/j.rser.2020.110395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieland Hoppe & Nils Thonemann & Stefan Bringezu, 2018. "Life Cycle Assessment of Carbon Dioxide–Based Production of Methane and Methanol and Derived Polymers," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 327-340, April.
    2. Buchspies, Benedikt & Kaltschmitt, Martin, 2018. "A consequential assessment of changes in greenhouse gas emissions due to the introduction of wheat straw ethanol in the context of European legislation," Applied Energy, Elsevier, vol. 211(C), pages 368-381.
    3. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    4. Timothy J. Wallington & James E. Anderson & Robert D. Kleine & Hyung Chul Kim & Heiko Maas & Adam R. Brandt & Gregory A. Keoleian, 2017. "When Comparing Alternative Fuel-Vehicle Systems, Life Cycle Assessment Studies Should Consider Trends in Oil Production," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 244-248, April.
    5. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    7. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    2. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Buchspies, Benedikt & Kaltschmitt, Martin, 2018. "A consequential assessment of changes in greenhouse gas emissions due to the introduction of wheat straw ethanol in the context of European legislation," Applied Energy, Elsevier, vol. 211(C), pages 368-381.
    3. Shuai Nie & Guotian Cai & Yixuan Li & Yushu Chen & Ruxue Bai & Liping Gao & Xiaoyu Chen, 2022. "To Adopt CCU Technology or Not? An Evolutionary Game between Local Governments and Coal-Fired Power Plants," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    4. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    5. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    6. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    8. Xuyao Zhang & Weimin Zhang & Dayu Xu, 2020. "Life Cycle Assessment of Complex Forestry Enterprise: A Case Study of a Forest–Fiberboard Integrated Enterprise," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    9. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    10. Cosette Khawaja & Rainer Janssen & Rita Mergner & Dominik Rutz & Marco Colangeli & Lorenzo Traverso & Maria Michela Morese & Manuela Hirschmugl & Carina Sobe & Alfonso Calera & David Cifuentes & Stefa, 2021. "Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine," Energies, MDPI, vol. 14(6), pages 1-21, March.
    11. Beims, R.F. & Simonato, C.L. & Wiggers, V.R., 2019. "Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 521-529.
    12. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    13. Reyes Valle, C. & Villanueva Perales, A.L. & Vidal-Barrero, F. & Ollero, P., 2015. "Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings," Applied Energy, Elsevier, vol. 148(C), pages 466-475.
    14. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    15. Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    17. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    18. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    20. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.