IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp612-620.html
   My bibliography  Save this article

Feasibility of semi-pilot scale up-flow anaerobic sludge blanket fixed-film reactor for fermentative bio-hydrogen production from palm oil mill effluent

Author

Listed:
  • Akhbari, Azam
  • Ibrahim, Shaliza
  • Ahmad, Muhammad Shakeel

Abstract

The present study focuses on bio-hydrogen production using palm oil mill effluent (POME) at a semi-pilot scale of an “up-flow anaerobic sludge blanket fixed-film (UASFF) reactor”. The reactor was operated in the palm oil mill industry for over 180 days of operation at ambient temperature through dark fermentation process with different organic loading rates (OLR) of 22–36 g-COD/l.d, depending on the COD concentration of POME. By acclimatizing the sludge, the semi-pilot scale UASFF reactor achieved hydrogen content, and hydrogen production rate (HPR) of 20%–68%, and 12 L H2/d to 39 L H2/d, respectively with a maximum COD removal of 35%. Moreover, from high through pyrosequencing analysis, hydrogen fermentation was attributed to Clostridium sensu stricto, Lactobacillus, and thermoanaerobium spp. This study offers an extensive approach to developing a semi-pilot scale bio-hydrogen production and, provides further prospects for profitable exploitation which could be a promising approach for reaching sustainability and economic feasibility (using wastewater as a low-cost feedstock) in commercial applications for future studies.

Suggested Citation

  • Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Feasibility of semi-pilot scale up-flow anaerobic sludge blanket fixed-film reactor for fermentative bio-hydrogen production from palm oil mill effluent," Renewable Energy, Elsevier, vol. 212(C), pages 612-620.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:612-620
    DOI: 10.1016/j.renene.2023.05.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    2. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    3. Bareschino, P. & Mancusi, E. & Urciuolo, M. & Paulillo, A. & Chirone, R. & Pepe, F., 2020. "Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Mahmod, Safa Senan & Azahar, Azratul Madihah & Tan, Jian Ping & Jahim, Jamaliah Md & Abdul, Peer Mohamed & Mastar, Mohd Shahbudin & Anuar, Nurina & Mohammed Yunus, Mohammed Faisal & Asis, Ahmad Jaril , 2019. "Operation performance of up-flow anaerobic sludge blanket (UASB) bioreactor for biohydrogen production by self-granulated sludge using pre-treated palm oil mill effluent (POME) as carbon source," Renewable Energy, Elsevier, vol. 134(C), pages 1262-1272.
    5. Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Optimization of up-flow velocity and feed flow rate in up-flow anaerobic sludge blanket fixed-film reactor on bio-hydrogen production from palm oil mill effluent," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    2. Sharvini, S.R. & Noor, Z.Z. & Stringer, L.C. & Afionis, S. & Chong, C.S., 2022. "Energy generation from palm oil mill effluent: A life cycle cost-benefit analysis and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Tan, Yue Dian & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah, 2020. "Multi-objective optimal design for integrated palm oil mill complex with consideration of effluent elimination," Energy, Elsevier, vol. 202(C).
    4. Tan, Yue Dian & Lim, Jeng Shiun, 2019. "Feasibility of palm oil mill effluent elimination towards sustainable Malaysian palm oil industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 507-522.
    5. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    6. Arnita Rishanty & Maxensius Tri Sambodo & Mesnan Silalahi & Erliza Hambali, 2021. "Zero-Waste Bioenergy To Lower Energy Transition Risks In Indonesia," Working Papers WP/17/2021, Bank Indonesia.
    7. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    8. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    9. Annamari Enström & Timo Haatainen & Adrian Suharto & Michael Giebels & Kuan Yee Lee, 2019. "Introducing a new GHG emission calculation approach for alternative methane reduction measures in the wastewater treatment of a palm oil mill," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3065-3076, December.
    10. Ahyahudin Sodri & Fentinur Evida Septriana, 2022. "Biogas Power Generation from Palm Oil Mill Effluent (POME): Techno-Economic and Environmental Impact Evaluation," Energies, MDPI, vol. 15(19), pages 1-16, October.
    11. Xu, H. & Lee, U. & Wang, M., 2020. "Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
    13. Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
    14. Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Wu, Zhihong & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Numerical investigation of methane steam reforming in packed bed reactor with internal helical heat fins," Energy, Elsevier, vol. 278(PB).
    16. Chong, Daniel Jia Sheng & Chan, Yi Jing & Arumugasamy, Senthil Kumar & Yazdi, Sara Kazemi & Lim, Jun Wei, 2023. "Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production ," Energy, Elsevier, vol. 266(C).
    17. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    19. Adhirashree Vannarath & Arun Kumar Thalla, 2020. "Evaluation, ranking, and selection of pretreatment methods for the conversion of biomass to biogas using multi-criteria decision-making approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 510-525, December.
    20. Bareschino, P. & Mancusi, E. & Tregambi, C. & Pepe, F. & Urciuolo, M. & Brachi, P. & Ruoppolo, G., 2021. "Integration of biomasses gasification and renewable-energies-driven water electrolysis for methane production," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:612-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.