IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4521-d602041.html
   My bibliography  Save this article

Improving Public Attitude towards Renewable Energy

Author

Listed:
  • Hugo Lucas

    (GREiA Research Group, University of Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Ruth Carbajo

    (GREiA Research Group, University of Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Tomoo Machiba

    (ERM (Environmental Resources Management), 2-2-1 Minatomirai, Nishi-ku, Yokohama 220-8119, Japan)

  • Evgeny Zhukov

    (GREiA Research Group, University of Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Luisa F. Cabeza

    (GREiA Research Group, University of Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

Abstract

In recent years, the urgent necessity and tremendous opportunity to accelerate the transition to a low-carbon competitive economy has resulted in growth of long-term targets for renewable energy and energy efficiency, which are coming from policy bodies worldwide. The inherent distributed nature of renewable energies, together with the modularity of those technologies, brings opportunities for consumer empowerment in terms of participation. Nevertheless, there is still the need for increasing global awareness and enabling policies, to strengthen the citizen role in the energy system, facilitating their proactive participation as renewable energy purchasers, investors, and clean energy producers. Drawing from research interviews and the academic literature, this article conceptualizes the understanding of the need for improving public attitudes and explores the factors influencing the acceptance in terms of misconceptions, best communication practices, activities addressing public concerns, and potential actions to bolster public support towards renewable energy. Research interviews were conducted at a technical workshop on social acceptance of renewable energy, held in Abu Dhabi in October 2013, and the findings show that despite detecting an increasing trend towards greater and more active participation of citizens, many misconceptions together with insufficient and inefficient awareness and communication initiatives on renewable energies persist. The main conclusions can be used as a basis for formulating sustainable energy communication and awareness campaigns in order to enhance public acceptance and increase active participation in renewable energy technologies.

Suggested Citation

  • Hugo Lucas & Ruth Carbajo & Tomoo Machiba & Evgeny Zhukov & Luisa F. Cabeza, 2021. "Improving Public Attitude towards Renewable Energy," Energies, MDPI, vol. 14(15), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4521-:d:602041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    2. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    3. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    4. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    5. Abdmouleh, Zeineb & Alammari, Rashid A.M. & Gastli, Adel, 2015. "Review of policies encouraging renewable energy integration & best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 249-262.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    8. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    9. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    10. Perri, Cecilia & Giglio, Carlo & Corvello, Vincenzo, 2020. "Smart users for smart technologies: Investigating the intention to adopt smart energy consumption behaviors," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    11. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    12. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    13. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    14. Sovacool, Benjamin K. & Lakshmi Ratan, Pushkala, 2012. "Conceptualizing the acceptance of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5268-5279.
    15. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    16. Hyysalo, Sampsa & Juntunen, Jouni K. & Freeman, Stephanie, 2013. "User innovation in sustainable home energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 490-500.
    17. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    18. Benjamin K. Sovacool & Raphael J. Heffron & Darren McCauley & Andreas Goldthau, 2016. "Energy decisions reframed as justice and ethical concerns," Nature Energy, Nature, vol. 1(5), pages 1-6, May.
    19. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    20. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    21. Frank, Björn & Enkawa, Takao & Schvaneveldt, Shane J. & Herbas Torrico, Boris, 2015. "Antecedents and consequences of innate willingness to pay for innovations: Understanding motivations and consumer preferences of prospective early adopters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 252-266.
    22. Chris Foulds & Toke Haunstrup Christensen, 2016. "Funding pathways to a low-carbon transition," Nature Energy, Nature, vol. 1(7), pages 1-4, July.
    23. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    24. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    25. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    26. Scherhaufer, Patrick & Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Schmidt, Johannes, 2017. "Patterns of acceptance and non-acceptance within energy landscapes: A case study on wind energy expansion in Austria," Energy Policy, Elsevier, vol. 109(C), pages 863-870.
    27. Flipse, Steven M. & van der Sanden, Maarten C.A. & Osseweijer, Patricia, 2014. "Improving industrial R&D practices with social and ethical aspects: Aligning key performance indicators with social and ethical aspects in food technology R&D," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 185-197.
    28. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    29. Lam, Patrick T.I. & Law, Angel O.K., 2016. "Crowdfunding for renewable and sustainable energy projects: An exploratory case study approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 11-20.
    30. David Bidwell, 2016. "Thinking through participation in renewable energy decisions," Nature Energy, Nature, vol. 1(5), pages 1-4, May.
    31. Friedl, Christina & Reichl, Johannes, 2016. "Realizing energy infrastructure projects – A qualitative empirical analysis of local practices to address social acceptance," Energy Policy, Elsevier, vol. 89(C), pages 184-193.
    32. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    33. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    34. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    35. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.
    36. Assefa, G. & Frostell, B., 2007. "Social sustainability and social acceptance in technology assessment: A case study of energy technologies," Technology in Society, Elsevier, vol. 29(1), pages 63-78.
    37. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    38. Sovacool, Benjamin K., 2009. "The cultural barriers to renewable energy and energy efficiency in the United States," Technology in Society, Elsevier, vol. 31(4), pages 365-373.
    39. Olsen, Marvin E., 1983. "Public acceptance of consumer energy conservation strategies," Journal of Economic Psychology, Elsevier, vol. 4(1-2), pages 183-196, October.
    40. Aaen, Sara Bjørn & Kerndrup, Søren & Lyhne, Ivar, 2016. "Beyond public acceptance of energy infrastructure: How citizens make sense and form reactions by enacting networks of entities in infrastructure development," Energy Policy, Elsevier, vol. 96(C), pages 576-586.
    41. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    42. Muench, Stefan & Thuss, Sebastian & Guenther, Edeltraud, 2014. "What hampers energy system transformations? The case of smart grids," Energy Policy, Elsevier, vol. 73(C), pages 80-92.
    43. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    44. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    45. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    46. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    47. Owens, Susan & Driffill, Louise, 2008. "How to change attitudes and behaviours in the context of energy," Energy Policy, Elsevier, vol. 36(12), pages 4412-4418, December.
    48. Raven, R.P.J.M. & Mourik, R.M. & Feenstra, C.F.J. & Heiskanen, E., 2009. "Modulating societal acceptance in new energy projects: Towards a toolkit methodology for project managers," Energy, Elsevier, vol. 34(5), pages 564-574.
    49. Sütterlin, Bernadette & Siegrist, Michael, 2017. "Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power," Energy Policy, Elsevier, vol. 106(C), pages 356-366.
    50. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    51. Verbruggen, Aviel & Fischedick, Manfred & Moomaw, William & Weir, Tony & Nadaï, Alain & Nilsson, Lars J. & Nyboer, John & Sathaye, Jayant, 2010. "Renewable energy costs, potentials, barriers: Conceptual issues," Energy Policy, Elsevier, vol. 38(2), pages 850-861, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang-Yong Park & Hyo-Sang Choi, 2021. "Operation Characteristics of Mechanical DC Circuit Breaker Combined with LC Divergence Oscillation Circuit for High Reliability of LVDC System," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Olimpia-Iuliana Ban & Simona Dzitac & Attila Simó & Adrian Florea, 2023. "Romania Residents’ Attitude Investigation toward the Transition to Renewable Energy Sources through Importance-Performance Analysis," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    3. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Charli Sitinjak & Rozmi Ismail & Zurinah Tahir & Rizqon Fajar & Wiyanti Fransisca Simanullang & Edward Bantu & Karuhanga Samuel & Rosniza Aznie Che Rose & Muhamad Razuhanafi Mat Yazid & Zambri Harun, 2022. "Acceptance of ELV Management: The Role of Social Influence, Knowledge, Attitude, Institutional Trust, and Health Issues," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    5. Nadia Yusuf & Mostafa F. Fawzy, 2023. "From Gym to Grid: Evaluating the Impact of COVID-19 on Saudi Gym-Goers’ Willingness to Utilize Human Kinetic Energy for Sustainable Energy Generation," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    6. Alharbi, Samar S. & Al Mamun, Md & Boubaker, Sabri & Rizvi, Syed Kumail Abbas, 2023. "Green finance and renewable energy: A worldwide evidence," Energy Economics, Elsevier, vol. 118(C).
    7. Gibellato, Simone & Ballestra, Luca Vincenzo & Fiano, Fabio & Graziano, Domenico & Luca Gregori, Gian, 2023. "The impact of education on the Energy Trilemma Index: A sustainable innovativeness perspective for resilient energy systems," Applied Energy, Elsevier, vol. 330(PB).
    8. Diego Menegon & Daniela Lobosco & Leopoldo Micò & Joana Fernandes, 2021. "Labeling of Installed Heating Appliances in Residential Buildings: An Energy Labeling Methodology for Improving Consumers’ Awareness," Energies, MDPI, vol. 14(21), pages 1-17, October.
    9. Dumitru-Tudor Jijie & Alexandru Maxim & Teodora Roman & Mihail Roșcovan, 2021. "Public Acceptance and Support of Renewable Energy in the North-East Development Region of Romania," Energies, MDPI, vol. 14(18), pages 1-14, September.
    10. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    11. Evangelia Karasmanaki & Evangelos Grigoroudis & Spyridon Galatsidas & Georgios Tsantopoulos, 2023. "Satisfaction with Media Information about Renewable Energy Investments," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    12. Lucas Roth & Özgür Yildiz & Jens Lowitzsch, 2021. "An Empirical Approach to Differences in Flexible Electricity Consumption Behaviour of Urban and Rural Populations—Lessons Learned in Germany," Sustainability, MDPI, vol. 13(16), pages 1-31, August.
    13. Steven Lloyd & Tetsuya Nakamura, 2022. "Public Perceptions of Renewable Energy in the Philippines," Sustainability, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    2. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    3. Eitan, Avri & Herman, Lior & Fischhendler, Itay & Rosen, Gillad, 2019. "Community–private sector partnerships in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 95-104.
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Moritz Ehrtmann & Lars Holstenkamp & Timon Becker, 2021. "Regional Electricity Models for Community Energy in Germany: The Role of Governance Structures," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    6. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    9. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    10. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    11. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    12. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    13. Curtin, Joseph & McInerney, Celine & Ó Gallachóir, Brian, 2017. "Financial incentives to mobilise local citizens as investors in low-carbon technologies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 534-547.
    14. Prosperi, Maurizio & Lombardi, Mariarosaria & Spada, Alessia, 2019. "Ex ante assessment of social acceptance of small-scale agro-energy system: A case study in southern Italy," Energy Policy, Elsevier, vol. 124(C), pages 346-354.
    15. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    16. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    17. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    18. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    20. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4521-:d:602041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.