IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v115y2019ics1364032119305933.html
   My bibliography  Save this article

Intended and unintended consequences of US renewable energy policies

Author

Listed:
  • Herath, N.
  • Tyner, W.E.

Abstract

Over the past four decades, the US has employed a range of policies to move the US energy mix towards more renewable and domestic resources. The purpose of this paper is to assess the employed policies using the following criteria: 1) Did the policy achieve the objective of increasing production and consumption of the targeted renewable energy? 2) Did the policy reduce US dependence on foreign energy? 3) What was the cost of the renewable energy increase, and how does it compare with the government estimated Social Cost of Carbon (SCC) around $40/ton ($0.04/kg) or with the implicit SSC often associated with achieving the aims of the Paris accord of $160/ton ($0.16/kg) or higher? 4) What were the unintended consequences of the policy? The important conclusions are: 1) Policy makers prefer regulation to pricing mechanisms; 2) The success in achieving quantitative targets is mixed; 3) The social cost of achieving the renewable penetration is generally higher than the SCC. With the renewable energy growth required to achieve the levels needed to achieve the Paris accord, the unintended consequence of costs rise significantly with scale. Most of the analysis done to date has only examined impacts and costs at low levels of penetration.

Suggested Citation

  • Herath, N. & Tyner, W.E., 2019. "Intended and unintended consequences of US renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305933
    DOI: 10.1016/j.rser.2019.109385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarica, Kemal & Tyner, Wallace E., 2013. "Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach," Energy Economics, Elsevier, vol. 40(C), pages 40-50.
    2. Richard Schmalensee, 2016. "The Performance of U.S. Wind and Solar Generators," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Mai, Trieu & Mulcahy, David & Hand, M. Maureen & Baldwin, Samuel F., 2014. "Envisioning a renewable electricity future for the United States," Energy, Elsevier, vol. 65(C), pages 374-386.
    4. Chen, Cliff & Wiser, Ryan & Mills, Andrew & Bolinger, Mark, 2009. "Weighing the costs and benefits of state renewables portfolio standards in the United States: A comparative analysis of state-level policy impact projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 552-566, April.
    5. Lutz Kilian, 2016. "The Impact of the Shale Oil Revolution on U.S. Oil and Gasoline Prices," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 185-205.
    6. Scott H. Irwin & Kristen McCormack & James H. Stock, 2018. "The Price of Biodiesel RINs and Economic Fundamentals," NBER Working Papers 25341, National Bureau of Economic Research, Inc.
    7. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    8. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    9. O'Leary, Paul M., 1945. "Wartime Rationing and Governmental Organization," American Political Science Review, Cambridge University Press, vol. 39(6), pages 1089-1106, December.
    10. Abbott, Philip C. & Hurt, Christopher & Tyner, Wallace E., 2008. "What's Driving Food Prices?," Issue Reports 37951, Farm Foundation.
    11. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    12. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    13. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    14. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.
    15. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    16. Lee, Minhyun & Hong, Taehoon & Koo, Choongwan, 2016. "An economic impact analysis of state solar incentives for improving financial performance of residential solar photovoltaic systems in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 590-607.
    17. Black, Geoffrey & Holley, Donald & Solan, David & Bergloff, Michael, 2014. "Fiscal and economic impacts of state incentives for wind energy development in the Western United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 136-144.
    18. Harry de Gorter & David R. Just, 2010. "The Social Costs and Benefits of Biofuels: The Intersection of Environmental, Energy and Agricultural Policy," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(1), pages 4-32.
    19. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    20. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    21. Mark A. Andor, Manuel Frondel, and Colin Vance, 2017. "Germanys Energiewende: A Tale of Increasing Costs and Decreasing Willingness-To-Pay," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    22. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    23. Buchanan, James M & Tullock, Gordon, 1975. "Polluters' Profits and Political Response: Direct Controls Versus Taxes," American Economic Review, American Economic Association, vol. 65(1), pages 139-147, March.
    24. Uwe A. Schneider & Bruce A. McCarl, 2006. "Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 277-287, November.
    25. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
    26. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    27. Jung, Jinho & Tyner, Wallace E., 2014. "Economic and policy analysis for solar PV systems in Indiana," Energy Policy, Elsevier, vol. 74(C), pages 123-133.
    28. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Correction to: Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 677-678, October.
    29. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    30. Subburaj, Anitha S. & Pushpakaran, Bejoy N. & Bayne, Stephen B., 2015. "Overview of grid connected renewable energy based battery projects in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 219-234.
    31. Sheeran, Kristen A., 2006. "Forest conservation in the Philippines: A cost-effective approach to mitigating climate change?," Ecological Economics, Elsevier, vol. 58(2), pages 338-349, June.
    32. Abbott, Philip C. & Hurt, Christopher & Tyner, Wallace E., 2011. "What’s Driving Food Prices in 2011?," Issue Reports 112927, Farm Foundation.
    33. Barbose, Galen & Bird, Lori & Heeter, Jenny & Flores-Espino, Francisco & Wiser, Ryan, 2015. "Costs and benefits of renewables portfolio standards in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 523-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Da & Liu, Yumeng & Sun, Kun, 2021. "Policy impact of cancellation of wind and photovoltaic subsidy on power generation companies in China," Renewable Energy, Elsevier, vol. 177(C), pages 134-147.
    2. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).
    3. Lee, Chien-Chiang & Ranjbar, Omid & Lee, Chi-Chuan, 2021. "Testing the persistence of shocks on renewable energy consumption: Evidence from a quantile unit-root test with smooth breaks," Energy, Elsevier, vol. 215(PB).
    4. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pena-Levano, Luis & Taheripour, Farzad & Tyner, Wally, 2020. "Cost comparison of climate change mitigation options," Conference papers 333134, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Pena-Levano, L. & Taheripour, F. & Tyner, W., 2018. "Cost comparison of climate change mitigation options," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277417, International Association of Agricultural Economists.
    3. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.
    4. Pena-Levano, Luis M. & Taheripour, Farzad & Tyner, Wallace E., 2017. "Modeling Emission Reductions and Forest Carbon Sequestration in GTAP: Data Base and Model Improvements," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258196, Agricultural and Applied Economics Association.
    5. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    6. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    7. Ovchinnikova, Natalia & Lynne, Gary D. & Sautter, John & Kruse, Colby, 2006. "What motivates farmers to sequester carbon: an empirical investigation," 2006 Annual meeting, July 23-26, Long Beach, CA 21288, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    9. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    10. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    11. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    12. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    13. G. Cornelis van Kooten & Susanna Laaksonen-Craig & Yichuan Wang, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 2007-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    14. Jeong, Dawoon & Tyner, Wallace E. & Meilan, Richard & Brown, Tristan R. & Doering, Otto C., 2020. "Stochastic techno-economic analysis of electricity produced from poplar plantations in Indiana," Renewable Energy, Elsevier, vol. 149(C), pages 189-197.
    15. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    16. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    17. Xin-gang, Zhao & Yi, Zuo & Hui, Wang & Zhen, Wang, 2022. "How can the cost and effectiveness of renewable portfolio standards be coordinated? Incentive mechanism design from the coevolution perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    19. Mai, Trieu & Cole, Wesley & Reimers, Andrew, 2019. "Setting cost targets for zero-emission electricity generation technologies," Applied Energy, Elsevier, vol. 250(C), pages 582-592.
    20. Gorman, Will & Montañés, Cristina Crespo & Mills, Andrew & Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan, 2022. "Are coupled renewable-battery power plants more valuable than independently sited installations?," Energy Economics, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.