IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v112y2019icp324-337.html
   My bibliography  Save this article

Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system

Author

Listed:
  • Xu, H.
  • Lin, W.Y.
  • Dal Magro, F.
  • Li, T
  • Py, X.
  • Romagnoli, A.

Abstract

Energy efficiency of current Waste-to-Energy plants is mainly limited by high temperature corrosion combined with temperature fluctuation of flue gas. This paper introduces a technology based on Phase Change Materials in the combustion chamber and its contribution to higher overall electrical efficiency. This technology encapsulates aluminium alloy-based Phase Change Materials in ceramic bricks similar to traditional refractory bricks in the combustion chamber. The proposed brick allows steam superheating on waterwall by absorbing temperature fluctuations and delivering a higher heat flux. Two studies are carried out to realize the technology development from refractory bricks to waterwall system. Study One adopts Dynamic Thermal Network method to model the heat transfer on waterwall with and without the novel brick. Real plant information is used as boundary condition to locate the design points of the novel bricks. Study Two conducts experiment to validate the numerical model, and performs a transient analysis of the waterwall to compare the thermal dampening and superheating effect of Phase Change Material-based waterwall. From the result, there is a 10% improvement in energy conversion efficiency on the waterwall by introducing the novel technology. Lastly, this paper introduces an integration scheme of three types of Phase Change Materials-based bricks in the waterwall to achieve continuous superheating of steam. A 34% electrical efficiency can be achieved by producing over 600 °C of superheated steam with this new plant configuration. The result shows that this new technology is highly applicable and promising to upgrade the overall efficiency of Waste-to-Energy plants.

Suggested Citation

  • Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
  • Handle: RePEc:eee:rensus:v:112:y:2019:i:c:p:324-337
    DOI: 10.1016/j.rser.2019.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Haoxin & Dal Magro, Fabio & Sadiki, Najim & Mancaux, Jean-Marie & Py, Xavier & Romagnoli, Alessandro, 2018. "Compatibility study between aluminium alloys and alternative recycled ceramics for thermal energy storage applications," Applied Energy, Elsevier, vol. 220(C), pages 94-105.
    2. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    3. Choubineh, Negin & Jannesari, Hamid & Kasaeian, Alibakhsh, 2019. "Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 103-111.
    4. Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.
    5. Vakalis, Stergios & Moustakas, Konstantinos & Loizidou, Maria, 2019. "Energy efficiency of waste-to-energy plants with a focus on the comparison and the constraints of the 3T method and the R1 formula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 323-329.
    6. Al-Abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Lim, C.H. & Th, Abdulrahman, 2012. "Review of thermal energy storage for air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5802-5819.
    7. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    8. Guillot, Stéphanie & Faik, Abdessamad & Rakhmatullin, Aydar & Lambert, Julien & Veron, Emmanuel & Echegut, Patrick & Bessada, Catherine & Calvet, Nicolas & Py, Xavier, 2012. "Corrosion effects between molten salts and thermal storage material for concentrated solar power plants," Applied Energy, Elsevier, vol. 94(C), pages 174-181.
    9. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    10. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    11. Costa, M. & Dell'Isola, M. & Massarotti, N., 2009. "Numerical analysis of the thermo-fluid-dynamic field in the combustion chamber of an incinerator plant," Energy, Elsevier, vol. 34(12), pages 2075-2086.
    12. Vasu, Anusuiah & Hagos, Ftwi Y. & Noor, M.M. & Mamat, R. & Azmi, W.H. & Abdullah, Abdul A. & Ibrahim, Thamir K., 2017. "Corrosion effect of phase change materials in solar thermal energy storage application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 19-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garcia, Pierre & Largiller, Grégory, 2022. "Performances and control aspects of steam storage systems with PCM: Key learnings from a pilot-scale prototype," Applied Energy, Elsevier, vol. 325(C).
    2. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
    4. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    5. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    6. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    7. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Vakalis, Stergios & Moustakas, Konstantinos & Loizidou, Maria, 2019. "Energy efficiency of waste-to-energy plants with a focus on the comparison and the constraints of the 3T method and the R1 formula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 323-329.
    3. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    5. Wu, Congcong & Yang, Haitao & He, Xiaohei & Hu, Chaoquan & Yang, Le & Li, Hongtao, 2022. "Principle, development, application design and prospect of fluidized bed heat exchange technology: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Behnam Dastjerdi & Vladimir Strezov & Ravinder Kumar & Masud Behnia, 2022. "Environmental Impact Assessment of Solid Waste to Energy Technologies and Their Perspectives in Australia," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    7. Azim Doğuş Tuncer & Emine Yağız Gürbüz & Ali Keçebaş & Aleksandar G. Georgiev, 2023. "Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System," Energies, MDPI, vol. 16(8), pages 1-19, April.
    8. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.
    9. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    10. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    11. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    12. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    13. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    14. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    15. Jean-Louis Combes & Alexandru Minea & Pegdéwendé Nestor Sawadogo, 2019. "Assessing the effects of combating illicit financial flows on domestic tax revenue mobilization in developing countries," Post-Print halshs-02315734, HAL.
    16. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    17. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    18. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    19. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    20. Benjamin Nölting & Bettina König & Anne B. Zimmermann & Antonietta Di Giulio & Martina Schäfer & Flurina Schneider, 2022. "Dealing with the COVID-19 pandemic: an opportunity to reflect on sustainability research," Sustainability Nexus Forum, Springer, vol. 30(1), pages 11-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:112:y:2019:i:c:p:324-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.