IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v108y2019icp323-329.html
   My bibliography  Save this article

Energy efficiency of waste-to-energy plants with a focus on the comparison and the constraints of the 3T method and the R1 formula

Author

Listed:
  • Vakalis, Stergios
  • Moustakas, Konstantinos
  • Loizidou, Maria

Abstract

Managing the municipal solid waste (MSW) is a task that requires the combination of multiple strategies in order to follow the concept of circular economy. Waste-to-Energy (WtE) plants are producing electricity and heat but also have other byproducts that need to be disposed or can be reused. The standard method for assessing the WtE plants is the utilization of the R1 formula. The R1 formula has several limitations and is not able to integrate more parameters like the recovery of metals. The integration of the climate correction factor can improve the R1 up to 1.25 times but this factor is related to the Heating Degree Days, which is a rapidly declining value due to climate change. Contrary to the R1 Formula, the 3T Method is a novel method that can take into consideration all the range of products like syngas and biooil in a thermodynamically consistent way. These two methods were used to analyze three characteristic incineration plants and two gasification plants and this is the first time that this comparison is being presented. The results showed that the two methods have different ranges of returned values, with the R1 returning values (usually) between 0.5 and 1.1 and the 3T method returning values between 0.2 and 0.3. The 3T method on the one hand promotes high electrical efficiencies, i.e. 3T values approach the 0.3 mark for 30% electrical efficiency, and on the other hand promotes polygeneration where the recovery of char and metals can elevate the 3T value well above the 0.3 level for only 15% electrical efficiency and 70% metal recovery.

Suggested Citation

  • Vakalis, Stergios & Moustakas, Konstantinos & Loizidou, Maria, 2019. "Energy efficiency of waste-to-energy plants with a focus on the comparison and the constraints of the 3T method and the R1 formula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 323-329.
  • Handle: RePEc:eee:rensus:v:108:y:2019:i:c:p:323-329
    DOI: 10.1016/j.rser.2019.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    2. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    3. Dongliang Zhang & Guangqing Huang & Yimin Xu & Qinghua Gong, 2015. "Waste-to-Energy in China: Key Challenges and Opportunities," Energies, MDPI, vol. 8(12), pages 1-15, December.
    4. Jean-François Perrot & Alison Subiantoro, 2018. "Municipal Waste Management Strategy Review and Waste-to-Energy Potentials in New Zealand," Sustainability, MDPI, vol. 10(9), pages 1-12, August.
    5. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    6. Bajić, Bojana Ž. & Dodić, Siniša N. & Vučurović, Damjan G. & Dodić, Jelena M. & Grahovac, Jovana A., 2015. "Waste-to-energy status in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1437-1444.
    7. Stergios Vakalis & Konstantinos Moustakas, 2019. "Applications of the 3T Method and the R1 Formula as Efficiency Assessment Tools for Comparing Waste-to-Energy and Landfilling," Energies, MDPI, vol. 12(6), pages 1-11, March.
    8. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    2. Caferra, Rocco & D'Adamo, Idiano & Morone, Piergiuseppe, 2023. "Wasting energy or energizing waste? The public acceptance of waste-to-energy technology," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    2. Wu, Congcong & Yang, Haitao & He, Xiaohei & Hu, Chaoquan & Yang, Le & Li, Hongtao, 2022. "Principle, development, application design and prospect of fluidized bed heat exchange technology: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Behnam Dastjerdi & Vladimir Strezov & Ravinder Kumar & Masud Behnia, 2022. "Environmental Impact Assessment of Solid Waste to Energy Technologies and Their Perspectives in Australia," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    4. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    7. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    10. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," MPRA Paper 105959, University Library of Munich, Germany.
    11. Ahmad Aiman Zulkifli & Mohd Zulkhairi Mohd Yusoff & Latifah Abd Manaf & Mohd Rafein Zakaria & Ahmad Muhaimin Roslan & Hidayah Ariffin & Yoshihito Shirai & Mohd Ali Hassan, 2019. "Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    12. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    13. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    14. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    15. Amna Farrukh & Aymen Sajjad, 2024. "Investigating sustainability tensions and resolution strategies in the plastic food packaging industry—A paradox theory approach," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 2868-2889, May.
    16. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
    17. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    18. Song, Jinbo & Sun, Yan & Jin, Lulu, 2017. "PESTEL analysis of the development of the waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 276-289.
    19. Massoud Sofi & Ylias Sabri & Zhiyuan Zhou & Priyan Mendis, 2019. "Transforming Municipal Solid Waste into Construction Materials," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    20. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:108:y:2019:i:c:p:323-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.