IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp469-482.html
   My bibliography  Save this article

Effects of urban compactness on solar energy potential

Author

Listed:
  • Mohajeri, Nahid
  • Upadhyay, Govinda
  • Gudmundsson, Agust
  • Assouline, Dan
  • Kämpf, Jérôme
  • Scartezzini, Jean-Louis

Abstract

Compactness is a major urban form parameter that affects the accessibility of solar energy in the built environment. Here we explore the relation between various compactness indicators and solar potential in the 16 neighbourhoods (11,418 buildings) constituting the city of Geneva (Switzerland). The solar potential is assessed for building integrated photovoltaics (BiPV), solar thermal collectors (STC), and direct gain passive solar systems. The hourly solar irradiation on each of the building surfaces over one year period is calculated using CitySim simulations, while taking the effects of irradiation threshold for roof and facades into account. With increasing compactness, the annual solar irradiation decreases from 816 to 591 kWh m−2. When passing from dispersed to compact neighbourhoods, the BiPV potential (given as percentage of total area) for facades decreases from 20% to 3%, the STC potential from 85% to 49%, and the passive solar heating potential from 21% to 4%, whereas for roofs the BiPV potential decreases from 94% to 79% and the STC potential from 100% to 95%. The solar potential for roofs, therefore, is much less affected than that for facades by the compactness. The results should be of great help for urban-form energy optimisation and building retrofitting interventions.

Suggested Citation

  • Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:469-482
    DOI: 10.1016/j.renene.2016.02.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Kyung Sun & Lee, Jae Wook & Lee, Jae Seung, 2016. "Feasibility study on the relation between housing density and solar accessibility and potential uses," Renewable Energy, Elsevier, vol. 85(C), pages 749-758.
    2. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    3. Yu-Hsin Tsai, 2005. "Quantifying Urban Form: Compactness versus 'Sprawl'," Urban Studies, Urban Studies Journal Limited, vol. 42(1), pages 141-161, January.
    4. Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2015. "Statistical-thermodynamics modelling of the built environment in relation to urban ecology," Ecological Modelling, Elsevier, vol. 307(C), pages 32-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    2. Hasan, Javeriya & Horvat, Miljana, 2023. "Spatial parameters and methodological approaches in solar potential assessment - State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. John Byrne & Job Taminiau & Kyung Nam Kim & Joohee Lee & Jeongseok Seo, 2017. "Multivariate analysis of solar city economics: impact of energy prices, policy, finance, and cost on urban photovoltaic power plant implementation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    4. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    5. Suzanne Vallance, 2014. "Living on the Edge: Lessons from the Peri-urban Village," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 38(6), pages 1954-1969, November.
    6. Xiaodong Xu & Chenhuan Yin & Wei Wang & Ning Xu & Tianzhen Hong & Qi Li, 2019. "Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    7. Andrea CIRILLI & Paolo VENERI, 2010. "Spatial Structure and CO2 Emissions Due to Commuting: an Analysis on Italian Urban Areas," Working Papers 353, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    8. Joan Carles Martori & Rafa Madariaga & Ramon Oller, 2016. "Real estate bubble and urban population density: six Spanish metropolitan areas 2001–2011," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(2), pages 369-392, March.
    9. Chévez, Pedro Joaquín & Martini, Irene & Discoli, Carlos, 2019. "Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability," Applied Energy, Elsevier, vol. 237(C), pages 751-778.
    10. Hashem Dadashpoor & Nina Khalighi, 2016. "Investigating Spatial Distribution of Regional Quality of Life (RQoL) in Iran Between 1996 and 2011," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 127(3), pages 1217-1248, July.
    11. Leticia Karine Sanches Brito & Maria Elisa Leite Costa & Sergio Koide, 2020. "Assessment of the Impact of Residential Urban Patterns of Different Hillslopes on Urban Drainage Systems and Ecosystem Services in the Federal District, Brazil," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    12. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    13. Paolo Veneri, 2010. "Urban Polycentricity and the Costs of Commuting: Evidence from Italian Metropolitan Areas," Growth and Change, Wiley Blackwell, vol. 41(3), pages 403-429, September.
    14. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    15. Luca Salvati, 2019. "Examining urban functions along a metropolitan gradient: a geographically weighted regression tells you more," Letters in Spatial and Resource Sciences, Springer, vol. 12(1), pages 19-40, April.
    16. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    17. Jo, J.H. & Aldeman, M.R. & Loomis, D.G., 2018. "Optimum penetration of regional utility-scale renewable energy systems," Renewable Energy, Elsevier, vol. 118(C), pages 328-334.
    18. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    19. Dimitra Tsirigoti & Katerina Tsikaloudaki, 2018. "The Effect of Climate Conditions on the Relation between Energy Efficiency and Urban Form," Energies, MDPI, vol. 11(3), pages 1-29, March.
    20. Ivan Muñiz & Andrés Dominguez, 2020. "The Impact of Urban Form and Spatial Structure on per Capita Carbon Footprint in U.S. Larger Metropolitan Areas," Sustainability, MDPI, vol. 12(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:469-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.