IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312319.html
   My bibliography  Save this article

Photovoltaic modules designed for architectural integration without negative performance consequences

Author

Listed:
  • López-Escalante, M.C.
  • Navarrete-Astorga, E.
  • Gabás Perez, M.
  • Ramos- Barrado, J.R.
  • Martín, F.

Abstract

Nowadays, the photovoltaic technology level development makes it the best option for its building integration as energy supplier. Nevertheless, its aesthetic appearance plays a relevant role because architect requirements go beyond the simple installation of solar devices on terraces. In order to fulfill their requirements, the typical white backsheet uses to be replaced by a black one. This simple change leads to a huge PV module performance reduction. In this work, it has been demonstrated that a suitable material selection allows to fabricate photovoltaic modules with a high architectonic integration, but without power reduction with respect to the most commercial solar devices. The former consists in the replacement of the typical glass front cover and the white backsheet by an antireflective glass and a black backsheet respectively. All the study has been developed on real size photovoltaic modules fabricated in an automatic line. The obtained results determine that those modules where black backsheets are used, suffer a power reduction equal to 8.66 W per fabricated module. Nevertheless, when in addition of the black backsheet an antireflective coating glass is implemented, the resulted PV modules present a more aesthetic presence without a detrimental of their power performance when they are compared to the standard PV modules. Additionally, the fabricated solar devices using the proposed configuration successfully overcome the most common aging tests.

Suggested Citation

  • López-Escalante, M.C. & Navarrete-Astorga, E. & Gabás Perez, M. & Ramos- Barrado, J.R. & Martín, F., 2020. "Photovoltaic modules designed for architectural integration without negative performance consequences," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312319
    DOI: 10.1016/j.apenergy.2020.115741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristiansen, A.B. & Ma, T. & Wang, R.Z., 2019. "Perspectives on industrialized transportable solar powered zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 112-124.
    2. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    4. Assoa, Ya Brigitte & Gaillard, Leon & Ménézo, Christophe & Negri, Nicolas & Sauzedde, François, 2018. "Dynamic prediction of a building integrated photovoltaic system thermal behaviour," Applied Energy, Elsevier, vol. 214(C), pages 73-82.
    5. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    6. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    7. Anctil, Annick & Lee, Eunsang & Lunt, Richard R., 2020. "Net energy and cost benefit of transparent organic solar cells in building-integrated applications," Applied Energy, Elsevier, vol. 261(C).
    8. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    9. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    10. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    11. López-Escalante, M.C. & Fernández-Rodríguez, M. & Caballero, L.J. & Martín, F. & Gabás, M. & Ramos-Barrado, J.R., 2018. "Novel encapsulant architecture on the road to photovoltaic module power output increase," Applied Energy, Elsevier, vol. 228(C), pages 1901-1910.
    12. Butturi, M.A. & Lolli, F. & Sellitto, M.A. & Balugani, E. & Gamberini, R. & Rimini, B., 2019. "Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis," Applied Energy, Elsevier, vol. 255(C).
    13. Verma, L.K. & Sakhuja, M. & Son, J. & Danner, A.J. & Yang, H. & Zeng, H.C. & Bhatia, C.S., 2011. "Self-cleaning and antireflective packaging glass for solar modules," Renewable Energy, Elsevier, vol. 36(9), pages 2489-2493.
    14. Miguel Centeno Brito, 2020. "Assessing the Impact of Photovoltaics on Rooftops and Facades in the Urban Micro-Climate," Energies, MDPI, vol. 13(11), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    3. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    4. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    5. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Window Innovations: Enhancing Building Performance through Advanced Technologies," Energies, MDPI, vol. 17(14), pages 1-32, July.
    7. Bempah, Kwabena Opoku & Kwon, Kyoungjun & Kim, Katherine A., 2019. "Experimental study of photovoltaic panel mounting configurations for tube-shaped structures," Applied Energy, Elsevier, vol. 240(C), pages 754-765.
    8. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    9. Assoa, Ya Brigitte & Valencia-Caballero, Daniel & Rico, Elena & Del Caño, Teodosio & Furtado, Joao Victor, 2023. "Performance of a large size photovoltaic module for façade integration," Renewable Energy, Elsevier, vol. 211(C), pages 903-917.
    10. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    12. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    13. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    14. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).
    15. Pillai, Dhanup S. & Shabunko, Veronika & Krishna, Amal, 2022. "A comprehensive review on building integrated photovoltaic systems: Emphasis to technological advancements, outdoor testing, and predictive maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. abbas, Sajid & Yuan, Yanping & Hassan, Atazaz & Zhou, Jinzhi & Zeng, Chao & Yu, Min & Emmanuel, Bisengimana, 2022. "Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator," Energy, Elsevier, vol. 254(PB).
    17. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    18. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    19. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    20. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.