IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003409.html
   My bibliography  Save this article

A new semi-analytical model for studying the performance of deep U-shaped borehole heat exchangers

Author

Listed:
  • Liang, Yanzhong
  • Teng, Bailu
  • Luo, Wanjing

Abstract

In deep geothermal exploitations, the U-shaped borehole heat exchanger (UBHE) has a longer fluid retention time and a larger contact area with the formation. In order to improve the utilization efficiency of geothermal energy, it is becoming increasingly important to accurately evaluate the performance of the deep UBHEs. In this study, the authors develop a new semi-analytical model for characterizing the heat transfer behavior of the deep UBHE geothermal system. In this developed model, the temperature change within the wellbore is numerically simulated by the finite difference method, whereas the temperature change between the formation and the wellbore is analytically simulated by the Green's-function. Besides, the non-uniform heat flux distribution along the horizontal section is considered to characterize three-dimensional heat transfer behaviors. By means of this model, the influences of developing strategies and well configurations on the outlet temperature and total thermal power are investigated. The calculation results indicate that the traditional assumption of uniform temperature along the horizontal section can induce significant errors in evaluating the performance of the UBHE geothermal systems; the horizontal section length is more conducive to improving the extraction performance in a shallower geothermal formation, and a longer horizontal section leads to a higher outlet fluid temperature, together with a larger total thermal power; a higher injection rate, as well as a lower injection fluid temperature, is more favorable for improving the total thermal power; an insulation casing with a length equaling the depth of injection point can lead to the maximum thermal power of the UBHE geothermal system.

Suggested Citation

  • Liang, Yanzhong & Teng, Bailu & Luo, Wanjing, 2024. "A new semi-analytical model for studying the performance of deep U-shaped borehole heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003409
    DOI: 10.1016/j.renene.2024.120275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. BniLam, Noori & Al-Khoury, Rafid, 2016. "Transient heat conduction in an infinite medium subjected to multiple cylindrical heat sources: An application to shallow geothermal systems," Renewable Energy, Elsevier, vol. 97(C), pages 145-154.
    2. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    3. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Investigation of the horizontally-butted borehole heat exchanger based on a semi-analytical method considering groundwater seepage and geothermal gradient," Renewable Energy, Elsevier, vol. 171(C), pages 447-461.
    4. Yu, Han & Xu, Tianfu & Yuan, Yilong & Feng, Bo & ShangGuan, Shuantong, 2023. "Enhanced heat extraction performance from deep buried U-shaped well using the high-pressure jet grouting technology," Renewable Energy, Elsevier, vol. 202(C), pages 1377-1386.
    5. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    6. Pärisch, Peter & Mercker, Oliver & Oberdorfer, Phillip & Bertram, Erik & Tepe, Rainer & Rockendorf, Gunter, 2015. "Short-term experiments with borehole heat exchangers and model validation in TRNSYS," Renewable Energy, Elsevier, vol. 74(C), pages 471-477.
    7. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    8. Wei, Changjiang & Mao, Liangjie & Yao, Changshun & Yu, Guijian, 2022. "Heat transfer investigation between wellbore and formation in U-shaped geothermal wells with long horizontal section," Renewable Energy, Elsevier, vol. 195(C), pages 972-989.
    9. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    10. Wang, Guoying & Ma, Hongwei & Liu, Shaowei & Yang, Dong & Xu, Xiaokai & Fu, Mengxiong & Jia, Housheng, 2022. "Thermal power extraction from a deep, closed-loop, multi-level, multi-branch, U-shaped borehole heat exchanger geothermal system," Renewable Energy, Elsevier, vol. 198(C), pages 894-906.
    11. Liao, Youqiang & Sun, Xiaohui & Sun, Baojiang & Wang, Zhiyuan & Wang, Jintang & Wang, Xuerui, 2021. "Geothermal exploitation and electricity generation from multibranch U-shaped well–enhanced geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 2178-2189.
    12. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    13. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    14. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    3. Idroes, Ghalieb Mutig & Hardi, Irsan & Hilal, Iin Shabrina & Utami, Resty Tamara & Noviandy, Teuku Rizky & Idroes, Rinaldi, 2024. "Economic growth and environmental impact: Assessing the role of geothermal energy in developing and developed countries," Innovation and Green Development, Elsevier, vol. 3(3).
    4. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    5. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    6. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    7. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    8. Li, Jingyi & Gallego-Schmid, Alejandro & Stamford, Laurence, 2024. "Integrated sustainability assessment of repurposing onshore abandoned wells for geothermal power generation," Applied Energy, Elsevier, vol. 359(C).
    9. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    10. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    11. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    12. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    13. Wang, Zengli & Zhou, Hongyang & Hao, Muming & Wang, Jun & Geng, Maofei, 2022. "Thermodynamic analysis and comparative investigation of a novel total flow and Kalina cycle coupled system for fluctuating geothermal energy utilization," Energy, Elsevier, vol. 260(C).
    14. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    15. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    16. Huang, Yibin & Zhang, Yanjun & Xie, Yangyang & Zhang, Yu & Gao, Xuefeng & Ma, Jingchen, 2020. "Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor," Energy, Elsevier, vol. 210(C).
    17. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2023. "Numerical simulation study of intermittent heat extraction from hot dry rock using horizontal well based on thermal compensation," Energy, Elsevier, vol. 272(C).
    19. Yang, Ruiyue & Hong, Chunyang & Liu, Wei & Wu, Xiaoguang & Wang, Tianyu & Huang, Zhongwei, 2021. "Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 165(P1), pages 125-138.
    20. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.