IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap400-409.html
   My bibliography  Save this article

Measurements of fuel burn rate, emissions and thermal efficiency from a domestic two-stage wood-fired hydronic heater

Author

Listed:
  • Richter, Joseph P.
  • Bojko, Brian T.
  • Mollendorf, Joseph C.
  • DesJardin, Paul E.

Abstract

An experimental study is conducted of a two-stage wood-fired hydronic heater (WFHH). The WFHH contains two combustion chambers. The first is associated primarily with wood pyrolysis while the second, located down stream, is designed for secondary burning of undesirable emissions. A piezo-electric load cell based apparatus is developed to obtain direct measurements of fuel burn rate (FBR) - avoiding possible inaccuracies of standardized (full appliance weighing) approaches used for certification. To check the internal consistency of the experimental measurement, a theoretical mass loss relation is developed and used for reducing data and to explain the physical mechanism responsible for the existence of the experimentally observed global maximum burn rate. A system level numerical model is also developed based on a combination of well-stirred reactor theory and chemical equilibrium to provide estimates of flue exhaust products and temperature. Overall agreement between experiments and model predictions are reasonable for temperature and major combustion species. Experimental emissions maps within a temperature/equivalence ratio state space are used to demonstrate the current operating path for this WFHH. Average thermal efficiencies are measured in the range of 48–55%. These measurements are found to be internally self-consistent and provide guidance for more complete theoretical studies.

Suggested Citation

  • Richter, Joseph P. & Bojko, Brian T. & Mollendorf, Joseph C. & DesJardin, Paul E., 2016. "Measurements of fuel burn rate, emissions and thermal efficiency from a domestic two-stage wood-fired hydronic heater," Renewable Energy, Elsevier, vol. 96(PA), pages 400-409.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:400-409
    DOI: 10.1016/j.renene.2016.04.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    3. Kang, Sae Byul & Kim, Jong Jin & Choi, Kyu Sung & Sim, Bong Suk & Oh, Hong Young, 2013. "Development of a test facility to evaluate performance of a domestic wood pellet boiler," Renewable Energy, Elsevier, vol. 54(C), pages 2-7.
    4. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richter, Joseph P. & Weisberger, Joshua M. & Bojko, Brian T. & Mollendorf, Joseph C. & DesJardin, Paul E., 2019. "Numerical modeling of homogeneous gas and heterogeneous char combustion for a wood-fired hydronic heater," Renewable Energy, Elsevier, vol. 131(C), pages 890-899.
    2. Richter, Joseph P. & Weisberger, Joshua M. & Mollendorf, Joseph C. & DesJardin, Paul E., 2017. "Emissions from a domestic two-stage wood-fired hydronic heater: Effects of non-homogeneous fuel decomposition," Renewable Energy, Elsevier, vol. 112(C), pages 187-196.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richter, Joseph P. & Weisberger, Joshua M. & Bojko, Brian T. & Mollendorf, Joseph C. & DesJardin, Paul E., 2019. "Numerical modeling of homogeneous gas and heterogeneous char combustion for a wood-fired hydronic heater," Renewable Energy, Elsevier, vol. 131(C), pages 890-899.
    2. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    3. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    4. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Manzone, Marco & Paravidino, Elisa & Bonifacino, Gabriella & Balsari, Paolo, 2016. "Biomass availability and quality produced by vineyard management during a period of 15 years," Renewable Energy, Elsevier, vol. 99(C), pages 465-471.
    6. Guo, Feihong & Liu, Weizhen & He, Yi & Li, Xinjun & Zhang, Houhu, 2024. "Study on the combustion characteristics and pollutant emissions of cold-pressed pellets and pellet powders in fluidized-bed," Renewable Energy, Elsevier, vol. 220(C).
    7. Ahn, Joon & Jang, Jun Hwan, 2018. "Combustion characteristics of a 16 step grate-firing wood pellet boiler," Renewable Energy, Elsevier, vol. 129(PB), pages 678-685.
    8. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    9. Schwerz, Felipe & Neto, Durval Dourado & Caron, Braulio Otomar & Nardini, Claiton & Sgarbossa, Jaqueline & Eloy, Elder & Behling, Alexandre & Elli, Elvis Felipe & Reichardt, Klaus, 2020. "Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing," Renewable Energy, Elsevier, vol. 153(C), pages 1238-1250.
    10. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    13. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    14. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    16. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    17. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    19. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:400-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.