IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap220-232.html
   My bibliography  Save this article

Estimating CO2 emissions reduction from renewable energy use in Italy

Author

Listed:
  • Aliprandi, F.
  • Stoppato, A.
  • Mirandola, A.

Abstract

Many Public Administrations are supporting the installation of Renewable Energy Systems (RE, namely wind and photovoltaic), which provide almost carbon free sources of electricity, aiming to curtail CO2 emissions of the power generation sector. However, the real effect in terms of carbon dioxide reductions is still unclear, since the uncertainty and variability characterizing RE must be balanced by conventional generators. The model presented here simulates the technical constraints of power plants and the economic framework to be found in a national electricity market, and estimates carbon dioxide emissions. The results show that the reduction of CO2 emissions is lower than expected considering the amount of energy produced from renewable sources, and is related to the level of RE penetration and the season of the year; in summer the reduction is slightly greater, because of the higher production by Combined Cycle Gas Turbines (CCGTs) and the consequent decrease of that generated by the more pollutant coal power plants. The amount of reserve allocated by the Transmission System Operator (TSO) and the cycling on hourly basis have negligible effects on the carbon intensity of electricity generation. In the Italian system 1 kWh from RE displaces approximately 0.8 kWh from conventional power plants.

Suggested Citation

  • Aliprandi, F. & Stoppato, A. & Mirandola, A., 2016. "Estimating CO2 emissions reduction from renewable energy use in Italy," Renewable Energy, Elsevier, vol. 96(PA), pages 220-232.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:220-232
    DOI: 10.1016/j.renene.2016.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Myers, Kevin S. & Klein, Sanford A. & Reindl, Douglas T., 2010. "Assessment of high penetration of solar photovoltaics in Wisconsin," Energy Policy, Elsevier, vol. 38(11), pages 7338-7345, November.
    2. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Gutiérrez-Martín, F. & Da Silva-Álvarez, R.A. & Montoro-Pintado, P., 2013. "Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system," Energy, Elsevier, vol. 61(C), pages 108-117.
    5. Gullì, Francesco & Balbo, Antonio Lo, 2015. "The impact of intermittently renewable energy on Italian wholesale electricity prices: Additional benefits or additional costs?," Energy Policy, Elsevier, vol. 83(C), pages 123-137.
    6. Hart, Elaine K. & Jacobson, Mark Z., 2011. "A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables," Renewable Energy, Elsevier, vol. 36(8), pages 2278-2286.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Zhai, Pei & Larsen, Peter & Millstein, Dev & Menon, Surabi & Masanet, Eric, 2012. "The potential for avoided emissions from photovoltaic electricity in the United States," Energy, Elsevier, vol. 47(1), pages 443-450.
    9. Troy, Niamh & Denny, Eleanor & O'Malley, Mark, 2010. "Base-load cycling on a system with significant wind penetration," MPRA Paper 34848, University Library of Munich, Germany.
    10. De Vos, Kristof & Petoussis, Andreas G. & Driesen, Johan & Belmans, Ronnie, 2013. "Revision of reserve requirements following wind power integration in island power systems," Renewable Energy, Elsevier, vol. 50(C), pages 268-279.
    11. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.
    2. Beltrami, Filippo & Fontini, Fulvio & Grossi, Luigi, 2021. "The value of carbon emission reduction induced by Renewable Energy Sources in the Italian power market," Ecological Economics, Elsevier, vol. 189(C).
    3. Vujović, Tanja & Petković, Zdravka & Pavlović, Miloš & Jović, Srdjan, 2018. "Economic growth based in carbon dioxide emission intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 179-185.
    4. Majid Mahmoodi, 2017. "The Relationship between Economic Growth, Renewable Energy, and CO2 Emissions: Evidence from Panel Data Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 96-102.
    5. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    6. Prina, Matteo Giacomo & Fanali, Lorenzo & Manzolini, Giampaolo & Moser, David & Sparber, Wolfram, 2018. "Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study," Energy, Elsevier, vol. 160(C), pages 33-43.
    7. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    8. Li, Xiao & Liu, Pan & Feng, Maoyuan & Jordaan, Sarah M. & Cheng, Lei & Ming, Bo & Chen, Jie & Xie, Kang & Liu, Weibo, 2024. "Energy transition paradox: Solar and wind growth can hinder decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    10. Matheus Koengkan, 2018. "The decline of environmental degradation by renewable energy consumption in the MERCOSUR countries: an approach with ARDL modeling," Environment Systems and Decisions, Springer, vol. 38(3), pages 415-425, September.
    11. Arbolino, Roberta & Boffardi, Raffaele & Ioppolo, Giuseppe, 2019. "The effectiveness of European energy policy on the Italian system: Regional evidences from a hierarchical cluster analysis approach," Energy Policy, Elsevier, vol. 132(C), pages 47-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    2. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2015. "A simplified optimization model to short-term electricity planning," Energy, Elsevier, vol. 93(P2), pages 2126-2135.
    3. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    5. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    6. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    8. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    9. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "Carbon dioxide (CO2) emissions from electricity: The influence of the North Atlantic Oscillation," Applied Energy, Elsevier, vol. 161(C), pages 487-496.
    10. Cook, Tyson & Shaver, Lee & Arbaje, Paul, 2018. "Modeling constraints to distributed generation solar photovoltaic capacity installation in the US Midwest," Applied Energy, Elsevier, vol. 210(C), pages 1037-1050.
    11. Komiyama, Ryoichi & Fujii, Yasumasa, 2017. "Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid," Energy Policy, Elsevier, vol. 101(C), pages 594-611.
    12. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    14. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    15. Damian Hasterok & Rui Castro & Marcin Landrat & Krzysztof Pikoń & Markus Doepfert & Hugo Morais, 2021. "Polish Energy Transition 2040: Energy Mix Optimization Using Grey Wolf Optimizer," Energies, MDPI, vol. 14(2), pages 1-27, January.
    16. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    17. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    19. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    20. Simoglou, Christos K. & Bakirtzis, Emmanouil A. & Biskas, Pandelis N. & Bakirtzis, Anastasios G., 2016. "Optimal operation of insular electricity grids under high RES penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1308-1316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:220-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.