IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v82y2015icp14-20.html
   My bibliography  Save this article

Thermal management of solar photovoltaics modules for enhanced power generation

Author

Listed:
  • McColl, Stuart J.
  • Rodgers, Peter
  • Eveloy, Valerie

Abstract

Industry and government interest in solar energy has increased in recent years in the Middle East. However, despite high levels of solar irradiance in the Arabian Gulf, harsh climatic conditions adversely affect the electrical performance of solar photovoltaics (PV). The objective of this study is to compare the annual performance characteristics of solar PV modules that utilize either sun-tracking or water cooling to increase electrical power generation relative to that of stationary, passively cooled modules in the Middle East climatic conditions. This is achieved using an electro-thermal model developed and validated against experimental data acquired in this study. The model is used to predict the annual electrical power output of a 140 W PV module in Abu Dhabi (24.43°N, 54.45°E) under four operating conditions: (i) stationary geographical south facing orientation with passive air cooling, (ii) sun-tracked orientation with passive air cooling, (iii) stationary geographical south facing orientation with water cooling at ambient air temperature, and (iv) stationary geographical south facing orientation with water refrigerated at either 10 °C or 20 °C below ambient air temperature. For water cooled modules, annual electrical power output increases by 22% for water at ambient air temperature, and by 28% and 31% for water refrigerated at 10 °C and 20 °C below ambient air temperature, respectively. 80% of the annual output enhancement obtained using water cooling occurs between the months of May and October. Finally, whereas the annual yield enhancement obtained with water cooling at ambient air temperature from May to October is of 18% relative to stationary passive cooling conditions, sun-tracking over the complete year produces an enhancement of only 15% relative to stationary passive cooling conditions.

Suggested Citation

  • McColl, Stuart J. & Rodgers, Peter & Eveloy, Valerie, 2015. "Thermal management of solar photovoltaics modules for enhanced power generation," Renewable Energy, Elsevier, vol. 82(C), pages 14-20.
  • Handle: RePEc:eee:renene:v:82:y:2015:i:c:p:14-20
    DOI: 10.1016/j.renene.2014.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Haiyang & Zhang, Le & Wei, ShengJie & Tong, Xuan & Yang, Yue & Ji, Xu, 2024. "A novel solar system for photothermal-assisted electrocatalytic nitrate reduction reaction to ammonia," Renewable Energy, Elsevier, vol. 221(C).
    2. Yadav, Kamlesh & Kumar, Atul & Sastry, O.S. & Wandhare, Rupesh, 2019. "Solar photovoltaics pumps operating head selection for the optimum efficiency," Renewable Energy, Elsevier, vol. 134(C), pages 169-177.
    3. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    2. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    3. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    4. Vega-Garita, Victor & Ramirez-Elizondo, Laura & Bauer, Pavol, 2017. "Physical integration of a photovoltaic-battery system: A thermal analysis," Applied Energy, Elsevier, vol. 208(C), pages 446-455.
    5. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    6. Oussama El Manssouri & Bekkay Hajji & Giuseppe Marco Tina & Antonio Gagliano & Stefano Aneli, 2021. "Electrical and Thermal Performances of Bi-Fluid PV/Thermal Collectors," Energies, MDPI, vol. 14(6), pages 1-20, March.
    7. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    8. Zhou, Zhihua & Wang, Xiaojuan & Zhang, Xiaoyan & Chen, Guanyi & Zuo, Jian & Pullen, Stephen, 2015. "Effectiveness of pavement-solar energy system – An experimental study," Applied Energy, Elsevier, vol. 138(C), pages 1-10.
    9. Zogou, Olympia & Stapountzis, Herricos, 2012. "Flow and heat transfer inside a PV/T collector for building application," Applied Energy, Elsevier, vol. 91(1), pages 103-115.
    10. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    11. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    12. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
    13. Mariyam Sattar & Abdul Rehman & Naseem Ahmad & AlSharef Mohammad & Ahmad Aziz Al Ahmadi & Nasim Ullah, 2022. "Performance Analysis and Optimization of a Cooling System for Hybrid Solar Panels Based on Climatic Conditions of Islamabad, Pakistan," Energies, MDPI, vol. 15(17), pages 1-22, August.
    14. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    15. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
    16. Pang, Wei & Zhang, Yongzhe & Duck, Benjamin C. & Yu, Hongwen & Song, Xuemei & Yan, Hui, 2020. "Cross sectional geometries effect on the energy efficiency of a photovoltaic thermal module: Numerical simulation and experimental validation," Energy, Elsevier, vol. 209(C).
    17. Vats, Kanchan & Tiwari, G.N., 2012. "Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system," Applied Energy, Elsevier, vol. 96(C), pages 409-416.
    18. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    19. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    20. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:82:y:2015:i:c:p:14-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.