IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp368-376.html
   My bibliography  Save this article

Data-based continuous wind speed models with arbitrary probability distribution and autocorrelation

Author

Listed:
  • Jónsdóttir, Guðrún Margrét
  • Milano, Federico

Abstract

The paper presents a systematic method to build dynamic stochastic models from wind speed measurement data. The resulting models fit any probability distribution and any autocorrelation that can be approximated through a weighted sum of decaying exponential and/or damped sinusoidal functions. The proposed method is tested by means of real-world wind speed measurement data with sampling rates ranging from seconds to hours. The statistical properties of the wind speed time series and the synthetic stochastic processes generated with the Stochastic Differential Equation (SDE)-based models are compared. Results indicate that the proposed method is simple to implement, robust and can accurately capture simultaneously the autocorrelation and probability distribution of wind speed measurement data.

Suggested Citation

  • Jónsdóttir, Guðrún Margrét & Milano, Federico, 2019. "Data-based continuous wind speed models with arbitrary probability distribution and autocorrelation," Renewable Energy, Elsevier, vol. 143(C), pages 368-376.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:368-376
    DOI: 10.1016/j.renene.2019.04.158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    2. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    3. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    4. Jan Kloppenborg Møller & Marco Zugno & Henrik Madsen, 2016. "Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 189-205, April.
    5. Verdejo, Humberto & Awerkin, Almendra & Saavedra, Eugenio & Kliemann, Wolfgang & Vargas, Luis, 2016. "Stochastic modeling to represent wind power generation and demand in electric power system based on real data," Applied Energy, Elsevier, vol. 173(C), pages 283-295.
    6. Lo Brano, Valerio & Orioli, Aldo & Ciulla, Giuseppina & Culotta, Simona, 2011. "Quality of wind speed fitting distributions for the urban area of Palermo, Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1026-1039.
    7. Zárate-Miñano, Rafael & Milano, Federico, 2016. "Construction of SDE-based wind speed models with exponentially decaying autocorrelation," Renewable Energy, Elsevier, vol. 94(C), pages 186-196.
    8. Zárate-Miñano, Rafael & Anghel, Marian & Milano, Federico, 2013. "Continuous wind speed models based on stochastic differential equations," Applied Energy, Elsevier, vol. 104(C), pages 42-49.
    9. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    10. Calif, Rudy, 2012. "PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation," Applied Energy, Elsevier, vol. 99(C), pages 173-182.
    11. Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
    12. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
    2. Carlos Adrián Hernández-Meléndez & Luis Alberto Rodríguez-Picón & Iván Juan Carlos Pérez-Olguín & Felipe Adrián Vázquez-Galvez & Jesús Israel Hernández-Hernández & Luis Carlos Méndez-González, 2024. "A Site-Specific Wind Energy Potential Analysis Based on Wind Probability Distributions: A Ciudad Juárez-México Case Study," Sustainability, MDPI, vol. 16(21), pages 1-22, October.
    3. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loukatou, Angeliki & Howell, Sydney & Johnson, Paul & Duck, Peter, 2018. "Stochastic wind speed modelling for estimation of expected wind power output," Applied Energy, Elsevier, vol. 228(C), pages 1328-1340.
    2. Arenas-López, J. Pablo & Badaoui, Mohamed, 2020. "Stochastic modelling of wind speeds based on turbulence intensity," Renewable Energy, Elsevier, vol. 155(C), pages 10-22.
    3. Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
    4. Zárate-Miñano, Rafael & Anghel, Marian & Milano, Federico, 2013. "Continuous wind speed models based on stochastic differential equations," Applied Energy, Elsevier, vol. 104(C), pages 42-49.
    5. Zárate-Miñano, Rafael & Milano, Federico, 2016. "Construction of SDE-based wind speed models with exponentially decaying autocorrelation," Renewable Energy, Elsevier, vol. 94(C), pages 186-196.
    6. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    8. Verdejo, Humberto & Awerkin, Almendra & Saavedra, Eugenio & Kliemann, Wolfgang & Vargas, Luis, 2016. "Stochastic modeling to represent wind power generation and demand in electric power system based on real data," Applied Energy, Elsevier, vol. 173(C), pages 283-295.
    9. Carapellucci, Roberto & Giordano, Lorena, 2013. "The effect of diurnal profile and seasonal wind regime on sizing grid-connected and off-grid wind power plants," Applied Energy, Elsevier, vol. 107(C), pages 364-376.
    10. Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
    11. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Economic performance indicators of wind energy based on wind speed stochastic modeling," Applied Energy, Elsevier, vol. 154(C), pages 290-297.
    12. Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
    13. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    14. Masseran, Nurulkamal, 2016. "Modeling the fluctuations of wind speed data by considering their mean and volatility effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 777-784.
    15. Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
    16. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    17. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    18. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    19. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    20. Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:368-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.