A cyclic time-dependent Markov process to model daily patterns in wind turbine power production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.12.071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nfaoui, H. & Essiarab, H. & Sayigh, A.A.M., 2004. "A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco," Renewable Energy, Elsevier, vol. 29(8), pages 1407-1418.
- Suomalainen, K. & Silva, C.A. & Ferrão, P. & Connors, S., 2012. "Synthetic wind speed scenarios including diurnal effects: Implications for wind power dimensioning," Energy, Elsevier, vol. 37(1), pages 41-50.
- Cancino-Solórzano, Yoreley & Gutiérrez-Trashorras, Antonio J. & Xiberta-Bernat, Jorge, 2010. "Analytical methods for wind persistence: Their application in assessing the best site for a wind farm in the State of Veracruz, Mexico," Renewable Energy, Elsevier, vol. 35(12), pages 2844-2852.
- Wen, Jiang & Zheng, Yan & Donghan, Feng, 2009. "A review on reliability assessment for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2485-2494, December.
- Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
- Carapellucci, Roberto & Giordano, Lorena, 2013. "The effect of diurnal profile and seasonal wind regime on sizing grid-connected and off-grid wind power plants," Applied Energy, Elsevier, vol. 107(C), pages 364-376.
- Suomalainen, K. & Silva, C. & Ferrão, P. & Connors, S., 2013. "Wind power design in isolated energy systems: Impacts of daily wind patterns," Applied Energy, Elsevier, vol. 101(C), pages 533-540.
- Masseran, N. & Razali, A.M. & Ibrahim, K. & Wan Zin, W.Z., 2012. "Evaluating the wind speed persistence for several wind stations in Peninsular Malaysia," Energy, Elsevier, vol. 37(1), pages 649-656.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Onar, Sezi Cevik & Oztaysi, Basar & Otay, İrem & Kahraman, Cengiz, 2015. "Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets," Energy, Elsevier, vol. 90(P1), pages 274-285.
- Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
- Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
- Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
- Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
- Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
- Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
- D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
- D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
- Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
- Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
- Loukatou, Angeliki & Howell, Sydney & Johnson, Paul & Duck, Peter, 2018. "Stochastic wind speed modelling for estimation of expected wind power output," Applied Energy, Elsevier, vol. 228(C), pages 1328-1340.
- Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
- Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
- Evans, S.P. & Clausen, P.D., 2015. "Modelling of turbulent wind flow using the embedded Markov chain method," Renewable Energy, Elsevier, vol. 81(C), pages 671-678.
- Masseran, Nurulkamal, 2016. "Modeling the fluctuations of wind speed data by considering their mean and volatility effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 777-784.
- Chia-Hung Wang & Qigen Zhao & Rong Tian, 2023. "Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network," Energies, MDPI, vol. 16(11), pages 1-24, May.
- Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.
- Suomalainen, K. & Silva, C.A. & Ferrão, P. & Connors, S., 2012. "Synthetic wind speed scenarios including diurnal effects: Implications for wind power dimensioning," Energy, Elsevier, vol. 37(1), pages 41-50.
- Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
- Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
- Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
- Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
- Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
- Perini de Souza, Noéle Bissoli & Cardoso dos Santos, José Vicente & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Long-range correlations of the wind speed in a northeast region of Brazil," Energy, Elsevier, vol. 243(C).
More about this item
Keywords
Cyclic Markov process; Wind power; Persistence; Diurnal pattern;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:557-568. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.