IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp136-149.html
   My bibliography  Save this article

Energy performance evaluation of a marketable net-zero-energy house: Solark I at Solar Decathlon China 2013

Author

Listed:
  • Peng, Changhai
  • Huang, Lu
  • Liu, Jianxun
  • Huang, Ying

Abstract

This paper presents the energy performance evaluation of a marketable net-zero-energy house (NZEH): Solark I at Solar Decathlon China 2013. The assessment methodologies are based on EnergyPlus simulations and measured data. The paper also discusses the reasons for the differences between the results of the simulations and the measurements, analyzes the investment cost, summarizes the lessons learned from the competition, and presents the potential for replicability and transposition from Solark I to implementation in a practical NZEH. The conclusions are that Solark I's investment cost is reasonable, its systems for building-integrated photovoltaics, hot water and heating, and ventilation and air conditioning demonstrated excellent performance based on the results of the energy performance evaluations using EnergyPlus simulations and measured data. Thus, Solark I is a marketable NZEH.

Suggested Citation

  • Peng, Changhai & Huang, Lu & Liu, Jianxun & Huang, Ying, 2015. "Energy performance evaluation of a marketable net-zero-energy house: Solark I at Solar Decathlon China 2013," Renewable Energy, Elsevier, vol. 81(C), pages 136-149.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:136-149
    DOI: 10.1016/j.renene.2015.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115002116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    2. Hamada, Yasuhiro & Nakamura, Makoto & Ochifuji, Kiyoshi & Yokoyama, Shintaro & Nagano, Katsunori, 2003. "Development of a database of low energy homes around the world and analyses of their trends," Renewable Energy, Elsevier, vol. 28(2), pages 321-328.
    3. Iqbal, M.T., 2004. "A feasibility study of a zero energy home in Newfoundland," Renewable Energy, Elsevier, vol. 29(2), pages 277-289.
    4. Cheng, C.L. & Sanchez Jimenez, Charles S. & Lee, Meng-Chieh, 2009. "Research of BIPV optimal tilted angle, use of latitude concept for south orientated plans," Renewable Energy, Elsevier, vol. 34(6), pages 1644-1650.
    5. Wang, Na & Esram, Trishan & Martinez, Luis A. & McCulley, Michael T., 2009. "A marketable all-electric solar house: A report of a Solar Decathlon project," Renewable Energy, Elsevier, vol. 34(12), pages 2860-2871.
    6. Gieseler, U.D.J. & Heidt, F.D. & Bier, W., 2004. "Evaluation of the cost efficiency of an energy efficient building," Renewable Energy, Elsevier, vol. 29(3), pages 369-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casini, Marco, 2020. "A positive energy building for the Middle East climate: ReStart4Smart Solar House at Solar Decathlon Middle East 2018," Renewable Energy, Elsevier, vol. 159(C), pages 1269-1296.
    2. Hee-Won Lim & Ji-Hyeon Kim & Hyeun-Seung Lee & U-Cheul Shin, 2021. "Case Study of Load Matching and Energy Cost for Net-Zero Energy Houses in Korea," Energies, MDPI, vol. 14(19), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Maria Dousi & S. Hionidis & S. Kaliakos & Elena Mastrapostoli & Michael Nomikos & Mattheos Santamouris & Afroditi Synnefa & Giuseppe Peter V, 2017. "Design and performance analysis of a zero-energy settlement in Greece," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 141-161.
    2. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    3. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    4. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    5. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    6. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    7. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    8. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    9. Verhaeghe, C. & Verbeke, S. & Audenaert, A., 2021. "A consistent taxonomic framework: towards common understanding of high energy performance building definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Allik, Alo & Märss, Maido & Uiga, Jaanus & Annuk, Andres, 2016. "Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving," Renewable Energy, Elsevier, vol. 99(C), pages 1116-1125.
    11. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    12. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    13. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    14. Shukla, Akash Kumar & Sudhakar, K. & Baredar, Prashant & Mamat, Rizalman, 2018. "Solar PV and BIPV system: Barrier, challenges and policy recommendation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3314-3322.
    15. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    16. Alrashed, Farajallah & Asif, Muhammad, 2015. "Analysis of critical climate related factors for the application of zero-energy homes in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1395-1403.
    17. Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    18. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    19. Pacheco, Miguel & Lamberts, Roberto, 2013. "Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations," Energy Policy, Elsevier, vol. 63(C), pages 716-725.
    20. Visa, Ion & Burduhos, Bogdan & Neagoe, Mircea & Moldovan, Macedon & Duta, Anca, 2016. "Comparative analysis of the infield response of five types of photovoltaic modules," Renewable Energy, Elsevier, vol. 95(C), pages 178-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:136-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.