IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp737-745.html
   My bibliography  Save this article

Site selection of ocean current power generation from drifter measurements

Author

Listed:
  • Chang, Yu-Chia
  • Chu, Peter C.
  • Tseng, Ruo-Shan

Abstract

Site selection of ocean current power generation is usually based on numerical ocean calculation models. In this study however, the selection near the coast of East Asia is optimally from the Surface Velocity Program (SVP) data using the bin average method. Japan, Vietnam, Taiwan, and Philippines have suitable sites for the development of ocean current power generation. In these regions, the average current speeds reach 1.4, 1.2, 1.1, and 1.0 m s−1, respectively. Vietnam has a better bottom topography to develop the current power generation. Taiwan and Philippines also have good conditions to build plants for generating ocean current power. Combined with the four factors of site selection (near coast, shallow seabed, stable flow velocity, and high flow speed), the waters near Vietnam is most suitable for the development of current power generation. Twelve suitable sites, located near coastlines of Vietnam, Japan, Taiwan, and Philippines, are identified for ocean current power generation. After the Kuroshio power plant being successfully operated in Taiwan, more current power plants can be built in these waters.

Suggested Citation

  • Chang, Yu-Chia & Chu, Peter C. & Tseng, Ruo-Shan, 2015. "Site selection of ocean current power generation from drifter measurements," Renewable Energy, Elsevier, vol. 80(C), pages 737-745.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:737-745
    DOI: 10.1016/j.renene.2015.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ponta, F.L. & Jacovkis, P.M., 2008. "Marine-current power generation by diffuser-augmented floating hydro-turbines," Renewable Energy, Elsevier, vol. 33(4), pages 665-673.
    2. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    3. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    4. Zodiatis, George & Galanis, George & Nikolaidis, Andreas & Kalogeri, Christina & Hayes, Dan & Georgiou, Georgios C. & Chu, Peter C. & Kallos, George, 2014. "Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study," Renewable Energy, Elsevier, vol. 69(C), pages 311-323.
    5. Finkl, Charles W. & Charlier, Roger, 2009. "Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2597-2604, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trivedi, Ashish & Trivedi, Vibha & Pandey, Krishan Kumar & Chichi, Ouissal, 2023. "An interpretive model to assess the barriers to ocean energy toward blue economic development in India," Renewable Energy, Elsevier, vol. 211(C), pages 822-830.
    2. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
    3. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    5. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    6. Katsutoshi Shirasawa & Junichiro Minami & Tsumoru Shintake, 2017. "Scale-Model Experiments for the Surface Wave Influence on a Submerged Floating Ocean-Current Turbine," Energies, MDPI, vol. 10(5), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
    2. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    3. Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
    4. Tsao, Che-Chih & Feng, An-Hsuan & Hsieh, Chieh & Fan, Kang-Hsien, 2017. "Marine current power with Cross-stream Active Mooring: Part I," Renewable Energy, Elsevier, vol. 109(C), pages 144-154.
    5. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    6. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    7. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Ayob, Mohd Nasir & Castellucci, Valeria & Waters, Rafael, 2017. "Wave energy potential and 1–50 TWh scenarios for the Nordic synchronous grid," Renewable Energy, Elsevier, vol. 101(C), pages 462-466.
    9. Campisi-Pinto, Salvatore & Gianchandani, Kaushal & Ashkenazy, Yosef, 2020. "Statistical tests for the distribution of surface wind and current speeds across the globe," Renewable Energy, Elsevier, vol. 149(C), pages 861-876.
    10. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    11. Shen, Haixue & Zydlewski, Gayle Barbin & Viehman, Haley A. & Staines, Garrett, 2016. "Estimating the probability of fish encountering a marine hydrokinetic device," Renewable Energy, Elsevier, vol. 97(C), pages 746-756.
    12. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    13. Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
    14. van Nieuwkoop, Joana C.C. & Smith, Helen C.M. & Smith, George H. & Johanning, Lars, 2013. "Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements," Renewable Energy, Elsevier, vol. 58(C), pages 1-14.
    15. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    16. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    17. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    18. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    19. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    20. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:737-745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.