IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp723-742.html
   My bibliography  Save this article

Scale model study of basic functions of the cross-stream active mooring for marine current power systems

Author

Listed:
  • Tsao, Che-Chih
  • Yang, Chia-Che
  • Chen, Zhi-Xiang

Abstract

The Cross-stream Active Mooring (CSAM) is a recently proposed concept for ocean current power generation featuring serial mooring of multiple submerged floating generator turbines on a long mooring tether with a set of hydro sails to stabilize and adjust the positions of the generator turbines in the sea. This research studies feasibility of deployment, stability under general sea conditions and capability of storm resistance and avoidance of the system through scale model tests and observations in conditions corresponding to the Kuroshio southeast of Taiwan. First, small scale models were designed, made and tested to achieve proper scaling of forces involved, including buoyancy, lifts, drags and thrusts resulted from the models in the flow. Next, single stage CSAM models were experimented to study the deployment angle in relation to sail pitch angle. Finally, multiple stages of models were connected into a CSAM linear array model and tested in a pool with a flow under different wave conditions. Tests and observations show that the model linear array was successfully deployed as designed, was basically not affected by waves in regular sea conditions and kept its formation in its storm avoidance mode under influences of waves of a 10-year recurrence typhoon.

Suggested Citation

  • Tsao, Che-Chih & Yang, Chia-Che & Chen, Zhi-Xiang, 2023. "Scale model study of basic functions of the cross-stream active mooring for marine current power systems," Renewable Energy, Elsevier, vol. 211(C), pages 723-742.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:723-742
    DOI: 10.1016/j.renene.2023.04.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Tai-Wen & Liau, Jian-Ming & Liang, Shin-Jye & Tzang, Shiaw-Yih & Doong, Dong-Jiing, 2015. "Assessment of Kuroshio current power test site of Green Island, Taiwan," Renewable Energy, Elsevier, vol. 81(C), pages 853-863.
    2. Tsao, Che-Chih & Han, Le & Jiang, Wen-Ting & Lee, Chun-Chen & Lee, Jia-Shi & Feng, An-Hsuan & Hsieh, Chieh, 2018. "Marine current power with cross-stream active mooring: Part II," Renewable Energy, Elsevier, vol. 127(C), pages 1036-1051.
    3. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    4. Tsao, Che-Chih & Feng, An-Hsuan & Hsieh, Chieh & Fan, Kang-Hsien, 2017. "Marine current power with Cross-stream Active Mooring: Part I," Renewable Energy, Elsevier, vol. 109(C), pages 144-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsao, Che-Chih & Feng, An-Hsuan & Baharudin, Agus & Yang, Chia-Che, 2024. "Characteristics of ocean current meandering and potential efficacy of maximizing power capacity by tracking short-term meanders with hydro sail enabled active mooring," Renewable Energy, Elsevier, vol. 222(C).
    2. Tsao, Che-Chih & Chen, Zhi-Xiang & Feng, An-Hsuan & Baharudin, Agus, 2023. "Study of concentrated anchoring, siting, system layout and preliminary cost analysis for a large scale Kuroshio power plant by the cross-stream active mooring," Renewable Energy, Elsevier, vol. 205(C), pages 66-93.
    3. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    4. Tsao, Che-Chih & Feng, An-Hsuan & Hsieh, Chieh & Fan, Kang-Hsien, 2017. "Marine current power with Cross-stream Active Mooring: Part I," Renewable Energy, Elsevier, vol. 109(C), pages 144-154.
    5. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    6. Juan F. Bárcenas Graniel & Jassiel V. H. Fontes & Hector F. Gomez Garcia & Rodolfo Silva, 2021. "Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel," Energies, MDPI, vol. 14(15), pages 1-23, July.
    7. Kabir, Asif & Lemongo-Tchamba, Ivan & Fernandez, Arturo, 2015. "An assessment of available ocean current hydrokinetic energy near the North Carolina shore," Renewable Energy, Elsevier, vol. 80(C), pages 301-307.
    8. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    9. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Luis A. Garcia-Reyes & Aurelio Beltrán-Telles & Francisco Bañuelos-Ruedas & Manuel Reta-Hernández & Juan M. Ramírez-Arredondo & Rodolfo Silva-Casarín, 2022. "Level-Shift PWM Control of a Single-Phase Full H-Bridge Inverter for Grid Interconnection, Applied to Ocean Current Power Generation," Energies, MDPI, vol. 15(5), pages 1-26, February.
    11. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
    12. Chang, Yu-Chia & Chu, Peter C. & Tseng, Ruo-Shan, 2015. "Site selection of ocean current power generation from drifter measurements," Renewable Energy, Elsevier, vol. 80(C), pages 737-745.
    13. Katsutoshi Shirasawa & Junichiro Minami & Tsumoru Shintake, 2017. "Scale-Model Experiments for the Surface Wave Influence on a Submerged Floating Ocean-Current Turbine," Energies, MDPI, vol. 10(5), pages 1-12, May.
    14. Tsao, Che-Chih & Han, Le & Jiang, Wen-Ting & Lee, Chun-Chen & Lee, Jia-Shi & Feng, An-Hsuan & Hsieh, Chieh, 2018. "Marine current power with cross-stream active mooring: Part II," Renewable Energy, Elsevier, vol. 127(C), pages 1036-1051.
    15. Campisi-Pinto, Salvatore & Gianchandani, Kaushal & Ashkenazy, Yosef, 2020. "Statistical tests for the distribution of surface wind and current speeds across the globe," Renewable Energy, Elsevier, vol. 149(C), pages 861-876.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:723-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.