IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v79y2015icp45-50.html
   My bibliography  Save this article

Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit

Author

Listed:
  • Nisamaneenate, Jurarat
  • Atong, Duangduen
  • Sornkade, Panchaluck
  • Sricharoenchaikul, Viboon

Abstract

Downdraft gasifier is a preferable method for carrying out biomass gasification because the produced gas has viable heating value with low tar content and can be cleaned to high purity, suitable for IC engine usage and chemical processing applications. This is due to throat section design in the downdraft gasifier which helps reducing the tar content through intense heat. In this study, a modular concept is applied to bring the gasification process to the place where feedstock is abundant which may yield better economic returns through additional utilization of various wastes and reduced transportation cost. The main objective is to study the potential of peanut shell waste conversion using a modular fixed bed gasifier coupled with thermal integration unit. The thermal integration unit was applied to return hot fuel gas exiting the gasifier to drying and pyrolysis zones of the reactor. The effects of gasification on gas flow rate of approximately 1.62–3.54 m3/hr and the performance of the gasification process were characterized in term of gas composition, conversion, gasification efficiency, biomass consumption rate, and specific gasification rate. The thermal integration unit also improved gasification reaction in which lower tar content and high gas production efficiency can be achieved. The results suggested that the air flow rate had integrated effects on product yield and composition; optimum of air flow rate resulted in the conversion of carbon converted to CO, CO2, and CH4 of 47.21%, 37.88%, and 8.76% respectively whereas hydrogen converted to H2 and CH4 were 49.31% and 20.91%, respectively at 3.06 m3/hr air. This was due to the chemical decomposition in the presence of oxygen and heat from combustion which supported the gasification reactions. The quality of product gas is found to be dependent on the air flow rate and continuity of feeding material. The produced gas from gasification of peanut shell waste contained quality combustible gases, which can be readily used in heat and power applications.

Suggested Citation

  • Nisamaneenate, Jurarat & Atong, Duangduen & Sornkade, Panchaluck & Sricharoenchaikul, Viboon, 2015. "Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit," Renewable Energy, Elsevier, vol. 79(C), pages 45-50.
  • Handle: RePEc:eee:renene:v:79:y:2015:i:c:p:45-50
    DOI: 10.1016/j.renene.2014.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114006119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    2. Dogru, M. & Howarth, C.R. & Akay, G. & Keskinler, B. & Malik, A.A., 2002. "Gasification of hazelnut shells in a downdraft gasifier," Energy, Elsevier, vol. 27(5), pages 415-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    2. Adnan, Muflih A. & Xiong, Qingang & Muraza, Oki & Hossain, Mohammad M., 2020. "Gasification of wet microalgae to produce H2-rich syngas and electricity: A thermodynamic study considering exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 2195-2205.
    3. Sharma, Mohit & Kaushal, Rajneesh, 2020. "Performance and emission analysis of a dual fuel variable compression ratio (VCR) CI engine utilizing producer gas derived from walnut shells," Energy, Elsevier, vol. 192(C).
    4. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    5. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Fan Liang & Tanksale, Akshat, 2014. "Review of recent developments in Ni-based catalysts for biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 428-438.
    2. Tejasvi Sharma & Diego M. Yepes Maya & Francisco Regis M. Nascimento & Yunye Shi & Albert Ratner & Electo E. Silva Lora & Lourival Jorge Mendes Neto & Jose Carlos Escobar Palacios & Rubenildo Vieira A, 2018. "An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization," Energies, MDPI, vol. 11(11), pages 1-23, November.
    3. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    4. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    5. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    6. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    7. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    8. Di Wu & Heming Dong & Jiyi Luan & Qian Du & Jianmin Gao & Dongdong Feng & Yu Zhang & Ziqi Zhao & Dun Li, 2023. "Reaction Molecular Dynamics Study on the Mechanism of Alkali Metal Sodium at the Initial Stage of Naphthalene Pyrolysis Evolution," Energies, MDPI, vol. 16(17), pages 1-19, August.
    9. Jiao, Liguo & Li, Jian & Yan, Beibei & Chen, Guanyi & Ahmed, Sarwaich, 2022. "Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling," Applied Energy, Elsevier, vol. 319(C).
    10. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    11. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    12. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    13. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    14. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    15. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    16. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    17. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    18. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    19. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    20. Sharma, Avdhesh Kr., 2009. "Experimental study on 75kWth downdraft (biomass) gasifier system," Renewable Energy, Elsevier, vol. 34(7), pages 1726-1733.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:79:y:2015:i:c:p:45-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.