IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v87y2015icp347-358.html
   My bibliography  Save this article

Valuing carbon assets for high-tech with application to the wind energy industry

Author

Listed:
  • Han, Liyan
  • Liu, Yang
  • Lin, Qiang
  • Huang, Gubo

Abstract

In contrast to the traditional methods for high-tech evaluation, we introduce a new, more active idea for considering the carbon asset effect, in addition to the economic and technological considerations for strategic significance. The method proposed in this paper considers a reduced amount of carbon emissions, less than that of the current industry baseline, to be an asset that is beneficial to a firm that adopts a new technology. The measured carbon asset values vary across different technologies, in different industries and over time. The new method is applied to the valuing of wind energy technology and uses the Weibull distribution to estimate the wind energy capacity and a concrete sensitivity analysis. These applications support the validity of the new method and show that the impact of the fluctuations of carbon sinks on the values of carbon assets is significantly greater than that of volatility in the production output. The paper also presents some policy recommendations based on the results.

Suggested Citation

  • Han, Liyan & Liu, Yang & Lin, Qiang & Huang, Gubo, 2015. "Valuing carbon assets for high-tech with application to the wind energy industry," Energy Policy, Elsevier, vol. 87(C), pages 347-358.
  • Handle: RePEc:eee:enepol:v:87:y:2015:i:c:p:347-358
    DOI: 10.1016/j.enpol.2015.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515301129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenkins, Jesse D., 2014. "Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?," Energy Policy, Elsevier, vol. 69(C), pages 467-477.
    2. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    3. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    4. Liu, Liwei & Chen, Chuxiang & Zhao, Yufei & Zhao, Erdong, 2015. "China׳s carbon-emissions trading: Overview, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 254-266.
    5. Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
    6. Bredin, Don & Hyde, Stuart & Muckley, Cal, 2014. "A microstructure analysis of the carbon finance market," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 222-234.
    7. repec:dau:papers:123456789/4210 is not listed on IDEAS
    8. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    9. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    10. Silva, R. & Pérez, M. & Berenguel, M. & Valenzuela, L. & Zarza, E., 2014. "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications," Applied Energy, Elsevier, vol. 121(C), pages 233-244.
    11. Lamboni, M. & Iooss, B. & Popelin, A.-L. & Gamboa, F., 2013. "Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 45-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinkuo Xu & Xiaofeng Lv & Liyan Han, 2019. "Carbon Asset of Electrification: Valuing the Transition from Fossil Fuel-Powered Buses to Battery Electric Buses in Beijing," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Liu, Yang & Han, Liyan & Yin, Ziqiao & Luo, Kongyi, 2017. "A competitive carbon emissions scheme with hybrid fiscal incentives: The evidence from a taxi industry," Energy Policy, Elsevier, vol. 102(C), pages 414-422.
    3. Liu, Yue & Sun, Huaping & Meng, Bo & Jin, Shunlin & Chen, Bin, 2023. "How to purchase carbon emission right optimally for energy-consuming enterprises? Analysis based on optimal stopping model," Energy Economics, Elsevier, vol. 124(C).
    4. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    5. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    2. Zhao, Xin-gang & Wu, Lei & Li, Ang, 2017. "Research on the efficiency of carbon trading market in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1-8.
    3. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    4. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    5. Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.
    6. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    7. Zhao, Lili & Wen, Fenghua & Wang, Xiong, 2020. "Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect," Energy Economics, Elsevier, vol. 91(C).
    8. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    9. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.
    10. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    11. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
    12. Weng, Qingqing & Xu, He, 2018. "A review of China’s carbon trading market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 613-619.
    13. Wang, Xiao-Qing & Su, Chi-Wei & Lobonţ, Oana-Ramona & Li, Hao & Nicoleta-Claudia, Moldovan, 2022. "Is China's carbon trading market efficient? Evidence from emissions trading scheme pilots," Energy, Elsevier, vol. 245(C).
    14. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    15. Liu, Zhiqing & Geng, Yong & Dai, Hancheng & Wilson, Jeffrey & Xie, Yang & Wu, Rui & You, Wei & Yu, Zhongjue, 2018. "Regional impacts of launching national carbon emissions trading market: A case study of Shanghai," Applied Energy, Elsevier, vol. 230(C), pages 232-240.
    16. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    17. Zhao, Xin-gang & Jiang, Gui-wu & Nie, Dan & Chen, Hao, 2016. "How to improve the market efficiency of carbon trading: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1229-1245.
    18. Wu, Xifeng & Xu, Yuechao & Lou, Yuting & Chen, Yu, 2018. "Low carbon transition in a distributed energy system regulated by localized energy markets," Energy Policy, Elsevier, vol. 122(C), pages 474-485.
    19. Liu, Liwei & Chen, Chuxiang & Zhao, Yufei & Zhao, Erdong, 2015. "China׳s carbon-emissions trading: Overview, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 254-266.
    20. Xiong, Ling & Shen, Bo & Qi, Shaozhou & Price, Lynn & Ye, Bin, 2017. "The allowance mechanism of China’s carbon trading pilots: A comparative analysis with schemes in EU and California," Applied Energy, Elsevier, vol. 185(P2), pages 1849-1859.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:87:y:2015:i:c:p:347-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.