IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp971-989.html
   My bibliography  Save this article

Turning of the tides: Assessing the international implementation of tidal current turbines

Author

Listed:
  • Sangiuliano, Stephen Joseph

Abstract

The excessive combustion of fossil fuels for energy provision have altered natural planetary functions, resulting in adverse biophysical and societal implications. Such implications have prompted many governments globally to advocate for the adoption of renewable energy systems in order to reduce GHG emissions. While renewable energy technologies such as solar and biogases have been thoroughly researched and deployed, tidal current turbines (TCTs) that harness kinetic energy from the lateral movement of the tides are a comparatively emerging renewable energy technology, and thus has received relatively less attention with respect to their potential to supplement the renewable energy transition. This paper examines the physics behind tidal movements and cycles, and the technological operation of TCTs. Environmental impacts and economic barriers are analyzed. Best practices of MSP from world leading nations are examined, along with current deploy-andmonitor-consenting regimes of TCT test facilities. An optimal TCT design is suggested based on a synthesis of information from proceeding sections. Finally, an analysis of the implementation of TCTs in Canada, China, and Norway is presented, the results of which demonstrate that harnessing the accessible and sustainably extractable resource of each nation can result in an aggregate installed capacity of 9076MW through the deployment of 7564 TCTs at a cost of $5,740,964,430, thereby creating 14,467 jobs. This would produce 29,829,711MWh/yr of electricity sold at approximately 22 cents/kWh, eliminating a total of 14,914,855,258kg of CO2e, approximately 0.1%. of the projected global electricity demand for 2016.

Suggested Citation

  • Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:971-989
    DOI: 10.1016/j.rser.2017.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aldy, Joseph Edgar & Leiserowitz, Anthony A & Kotchen, Matthew J, 2012. "Willingness to Pay and Political Support for a U.S. National Clean Energy Standard," Scholarly Articles 8832942, Harvard Kennedy School of Government.
    2. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    3. Myers, L. & Bahaj, A.S., 2005. "Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race," Renewable Energy, Elsevier, vol. 30(11), pages 1713-1731.
    4. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    5. Joseph E. Aldy & Matthew J. Kotchen & Anthony A. Leiserowitz, 2012. "Willingness to pay and political support for a US national clean energy standard," Nature Climate Change, Nature, vol. 2(8), pages 596-599, August.
    6. Bryden, Ian G. & Couch, Scott J., 2006. "ME1—marine energy extraction: tidal resource analysis," Renewable Energy, Elsevier, vol. 31(2), pages 133-139.
    7. Bronfman, Nicolás C. & Jiménez, Raquel B. & Arévalo, Pilar C. & Cifuentes, Luis A., 2012. "Understanding social acceptance of electricity generation sources," Energy Policy, Elsevier, vol. 46(C), pages 246-252.
    8. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    9. Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
    10. Charlier, Roger H., 1997. "Re-invention or aggorniamento? tidal power at 30 years," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(4), pages 271-289, December.
    11. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    12. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal current energy resource assessment in Ireland: Current status and future update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3206-3212, December.
    13. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    14. Bryden, I.G & Macfarlane, D.M, 2000. "The utilisation of short term energy storage with tidal current generation systems," Energy, Elsevier, vol. 25(9), pages 893-907.
    15. Geoffrey Heal, 2009. "The Economics of Renewable Energy," NBER Working Papers 15081, National Bureau of Economic Research, Inc.
    16. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    17. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    18. Vennell, Ross, 2012. "The energetics of large tidal turbine arrays," Renewable Energy, Elsevier, vol. 48(C), pages 210-219.
    19. Mueller, Markus & Wallace, Robin, 2008. "Enabling science and technology for marine renewable energy," Energy Policy, Elsevier, vol. 36(12), pages 4376-4382, December.
    20. Foley, Melissa M. & Halpern, Benjamin S. & Micheli, Fiorenza & Armsby, Matthew H. & Caldwell, Margaret R. & Crain, Caitlin M. & Prahler, Erin & Rohr, Nicole & Sivas, Deborah & Beck, Michael W. & Carr,, 2010. "Guiding ecological principles for marine spatial planning," Marine Policy, Elsevier, vol. 34(5), pages 955-966, September.
    21. Lester, Sarah E. & Costello, Christopher & Halpern, Benjamin S. & Gaines, Steven D. & White, Crow & Barth, John A., 2013. "Evaluating tradeoffs among ecosystem services to inform marine spatial planning," Marine Policy, Elsevier, vol. 38(C), pages 80-89.
    22. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    23. Battisti, Riccardo & Corrado, Annalisa, 2005. "Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology," Energy, Elsevier, vol. 30(7), pages 952-967.
    24. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    25. Douvere, F. & Maes, F. & Vanhulle, A. & Schrijvers, J., 2007. "The role of marine spatial planning in sea use management: The Belgian case," Marine Policy, Elsevier, vol. 31(2), pages 182-191, March.
    26. Anthony D. Owen, 2004. "Environmental Externalities, Market Distortions and the Economics of Renewable Energy Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 127-158.
    27. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    28. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Li, Gang & Zhu, Weidong, 2022. "Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters," Renewable Energy, Elsevier, vol. 189(C), pages 1120-1132.
    3. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    4. Devine-Wright, Patrick & Peacock, Adam, 2024. "Putting energy infrastructure into place: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    2. Sangiuliano, Stephen J., 2017. "Planning for tidal current turbine technology: A case study of the Gulf of St. Lawrence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 805-813.
    3. Sangiuliano, Stephen Joseph, 2017. "Community energy and emissions planning for tidal current turbines: A case study of the municipalities of the Southern Gulf Islands Region, British Columbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1-8.
    4. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    5. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal current energy resource assessment in Ireland: Current status and future update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3206-3212, December.
    6. Mestres, Marc & Griñó, Maria & Sierra, Joan Pau & Mösso, César, 2016. "Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain)," Energy, Elsevier, vol. 115(P1), pages 1179-1187.
    7. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    8. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    9. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    10. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    11. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    12. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    13. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    14. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    15. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    16. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    17. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    18. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    19. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    20. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:971-989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.