IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v65y2014icp64-69.html
   My bibliography  Save this article

Life cycle energy and environmental assessment of bio-CNG utilization from cassava starch wastewater treatment plants in Thailand

Author

Listed:
  • Papong, Seksan
  • Rotwiroon, Paritta
  • Chatchupong, Thawach
  • Malakul, Pomthong

Abstract

Global warming, energy security, and the rising costs of oil have added a greater driving force to the development of feasible alternatives to petroleum-based transportation fuels. In parallel, wastes and wastewater generated from various industries should be avoided or converted to energy more in the future in order to reduce environmental problems and provide additional sources of energy. In this aspect, biogas plant is an effective option where gas is produced biologically by the fermentation of animal dungs, sewage, and agricultural residues. To utilize biogas as a transportation fuel, raw biogas has to undergo two major processes: cleaning and upgrading, to achieve natural gas quality. The upgraded biogas (so called bio-methane or bio-CNG) is considered green fuel with respect to environment, climate, and human health. However, the resulting bio-CNG from the processes still needs to be evaluated in terms of greenhouse gas emissions and energy aspects. This paper presents the integrated life cycle energy and environmental assessment of compressed bio-methane gas (CBG or bio-CNG) generated from cassava starch wastewater treatment plant in Thailand. The functional units were set to be 1 MJ of bio-CNG and 1 km of vehicle driven. The system boundary covered six main steps: digestion, purification and upgrading, compression, distribution, refueling, and combustion. The energy analysis result showed that the net energy ratio was higher than one, indicating a net energy gain. For the greenhouse gases aspect, the results showed that the biogas production and biogas upgrading step had the highest impact due to methane loss and high energy consumption. Comparing with other fuels, the global warming potential of bio-CNG was lower than those of fossil-based CNG and gasoline.

Suggested Citation

  • Papong, Seksan & Rotwiroon, Paritta & Chatchupong, Thawach & Malakul, Pomthong, 2014. "Life cycle energy and environmental assessment of bio-CNG utilization from cassava starch wastewater treatment plants in Thailand," Renewable Energy, Elsevier, vol. 65(C), pages 64-69.
  • Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:64-69
    DOI: 10.1016/j.renene.2013.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2020. "Effect of injection timing on modified direct injection diesel engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 147(P1), pages 1019-1032.
    2. Roussos G. Papagiannakis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos, 2018. "Evaluation of the Air Oxygen Enrichment Effects on Combustion and Emissions of Natural Gas/Diesel Dual-Fuel Engines at Various Loads and Pilot Fuel Quantities," Energies, MDPI, vol. 11(11), pages 1-25, November.
    3. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    4. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    5. Channappagoudra, Manjunath, 2020. "Comparative study of baseline and modified engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 151(C), pages 604-618.
    6. Meneses-Jácome, Alexander & Diaz-Chavez, Rocío & Velásquez-Arredondo, Héctor I. & Cárdenas-Chávez, Diana L. & Parra, Roberto & Ruiz-Colorado, Angela A., 2016. "Sustainable Energy from agro-industrial wastewaters in Latin-America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1249-1262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    2. Premier, G.C. & Kim, J.R. & Massanet-Nicolau, J. & Kyazze, G. & Esteves, S.R.R. & Penumathsa, B.K.V. & Rodríguez, J. & Maddy, J. & Dinsdale, R.M. & Guwy, A.J., 2013. "Integration of biohydrogen, biomethane and bioelectrochemical systems," Renewable Energy, Elsevier, vol. 49(C), pages 188-192.
    3. Goulding, D. & Fitzpatrick, D. & O'Connor, R. & Browne, J.D. & Power, N.M., 2019. "Introducing gaseous transport fuel to Ireland: A strategic infrastructure framework," Renewable Energy, Elsevier, vol. 136(C), pages 548-557.
    4. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Browne, James & Nizami, Abdul-Sattar & Thamsiriroj, T & Murphy, Jerry D., 2011. "Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4537-4547.
    8. Starr, Katherine & Ramirez, Andrea & Meerman, Hans & Villalba, Gara & Gabarrell, Xavier, 2015. "Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain," Energy, Elsevier, vol. 79(C), pages 298-309.
    9. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    10. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    11. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    12. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    13. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    14. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    15. Ammenberg, Jonas & Feiz, Roozbeh, 2017. "Assessment of feedstocks for biogas production, part II—Results for strategic decision making," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 388-404.
    16. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    17. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    19. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    20. Khan, Shakeel A. & Malla, Fayaz A. & Rashmi, & Malav, Lal Chand & Gupta, Navindu & Kumar, Amit, 2018. "Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids," Energy, Elsevier, vol. 150(C), pages 153-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:65:y:2014:i:c:p:64-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.