IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v65y2014icp64-69.html
   My bibliography  Save this article

Life cycle energy and environmental assessment of bio-CNG utilization from cassava starch wastewater treatment plants in Thailand

Author

Listed:
  • Papong, Seksan
  • Rotwiroon, Paritta
  • Chatchupong, Thawach
  • Malakul, Pomthong

Abstract

Global warming, energy security, and the rising costs of oil have added a greater driving force to the development of feasible alternatives to petroleum-based transportation fuels. In parallel, wastes and wastewater generated from various industries should be avoided or converted to energy more in the future in order to reduce environmental problems and provide additional sources of energy. In this aspect, biogas plant is an effective option where gas is produced biologically by the fermentation of animal dungs, sewage, and agricultural residues. To utilize biogas as a transportation fuel, raw biogas has to undergo two major processes: cleaning and upgrading, to achieve natural gas quality. The upgraded biogas (so called bio-methane or bio-CNG) is considered green fuel with respect to environment, climate, and human health. However, the resulting bio-CNG from the processes still needs to be evaluated in terms of greenhouse gas emissions and energy aspects. This paper presents the integrated life cycle energy and environmental assessment of compressed bio-methane gas (CBG or bio-CNG) generated from cassava starch wastewater treatment plant in Thailand. The functional units were set to be 1 MJ of bio-CNG and 1 km of vehicle driven. The system boundary covered six main steps: digestion, purification and upgrading, compression, distribution, refueling, and combustion. The energy analysis result showed that the net energy ratio was higher than one, indicating a net energy gain. For the greenhouse gases aspect, the results showed that the biogas production and biogas upgrading step had the highest impact due to methane loss and high energy consumption. Comparing with other fuels, the global warming potential of bio-CNG was lower than those of fossil-based CNG and gasoline.

Suggested Citation

  • Papong, Seksan & Rotwiroon, Paritta & Chatchupong, Thawach & Malakul, Pomthong, 2014. "Life cycle energy and environmental assessment of bio-CNG utilization from cassava starch wastewater treatment plants in Thailand," Renewable Energy, Elsevier, vol. 65(C), pages 64-69.
  • Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:64-69
    DOI: 10.1016/j.renene.2013.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    2. Roussos G. Papagiannakis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos, 2018. "Evaluation of the Air Oxygen Enrichment Effects on Combustion and Emissions of Natural Gas/Diesel Dual-Fuel Engines at Various Loads and Pilot Fuel Quantities," Energies, MDPI, vol. 11(11), pages 1-25, November.
    3. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    4. Channappagoudra, Manjunath, 2020. "Comparative study of baseline and modified engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 151(C), pages 604-618.
    5. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2020. "Effect of injection timing on modified direct injection diesel engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 147(P1), pages 1019-1032.
    6. Meneses-Jácome, Alexander & Diaz-Chavez, Rocío & Velásquez-Arredondo, Héctor I. & Cárdenas-Chávez, Diana L. & Parra, Roberto & Ruiz-Colorado, Angela A., 2016. "Sustainable Energy from agro-industrial wastewaters in Latin-America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1249-1262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Premier, G.C. & Kim, J.R. & Massanet-Nicolau, J. & Kyazze, G. & Esteves, S.R.R. & Penumathsa, B.K.V. & Rodríguez, J. & Maddy, J. & Dinsdale, R.M. & Guwy, A.J., 2013. "Integration of biohydrogen, biomethane and bioelectrochemical systems," Renewable Energy, Elsevier, vol. 49(C), pages 188-192.
    2. Browne, James & Nizami, Abdul-Sattar & Thamsiriroj, T & Murphy, Jerry D., 2011. "Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4537-4547.
    3. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    4. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    5. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    6. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    7. Ammenberg, Jonas & Feiz, Roozbeh, 2017. "Assessment of feedstocks for biogas production, part II—Results for strategic decision making," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 388-404.
    8. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    9. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    11. Khan, Shakeel A. & Malla, Fayaz A. & Rashmi, & Malav, Lal Chand & Gupta, Navindu & Kumar, Amit, 2018. "Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids," Energy, Elsevier, vol. 150(C), pages 153-163.
    12. George Mallouppas & Elias Ar. Yfantis & Constantina Ioannou & Andreas Paradeisiotis & Angelos Ktoris, 2023. "Application of Biogas and Biomethane as Maritime Fuels: A Review of Research, Technology Development, Innovation Proposals, and Market Potentials," Energies, MDPI, vol. 16(4), pages 1-25, February.
    13. Uusitalo, V. & Havukainen, J. & Soukka, R. & Väisänen, S. & Havukainen, M. & Luoranen, M., 2015. "Systematic approach for recognizing limiting factors for growth of biomethane use in transportation sector – A case study in Finland," Renewable Energy, Elsevier, vol. 80(C), pages 479-488.
    14. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    15. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    16. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    17. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    18. Stürmer, Bernhard, 2017. "Biogas – Part of Austria's future energy supply or political experiment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 525-532.
    19. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    20. Cong, Rong-Gang & Caro, Dario & Thomsen, Marianne, 2017. "Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis," MPRA Paper 112291, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:65:y:2014:i:c:p:64-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.