IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v19y2000i1p291-297.html
   My bibliography  Save this article

Reliability based socio economic optimal renewable energy model for India

Author

Listed:
  • Iniyan, S
  • Suganthi, L
  • Jagadeesan, T.R
  • Samuel, Anand A

Abstract

Renewable energy sources such as solar, wind and biomass have to play a vital role in the developing countries like India in order to meet the growing energy demand. In the last five years, some renewable energy sources had emerged as technically and economically viable alternatives in the energy sector, as a result, more ambitious plans for their dissemination were being launched. In this situation, development of an energy model exclusively for renewables will help in the allocation of appropriate renewable energy systems for different end-uses in the future. An attempt has been made to develop a reliability based socio economic optimal renewable energy model for India in the year 2020–2021. The effect of social acceptance variation in OREM model was analysed. The lighting end-use would be met by solar PV and biogas system to an extent of 0.5198×1015 kJ and 0.75×1015 kJ, respectively. Similarly, the renewable energy utilisation is found for other end-uses.

Suggested Citation

  • Iniyan, S & Suganthi, L & Jagadeesan, T.R & Samuel, Anand A, 2000. "Reliability based socio economic optimal renewable energy model for India," Renewable Energy, Elsevier, vol. 19(1), pages 291-297.
  • Handle: RePEc:eee:renene:v:19:y:2000:i:1:p:291-297
    DOI: 10.1016/S0960-1481(99)00043-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148199000439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(99)00043-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luthra, Damyant & Fuller, J.David, 1990. "Exploring regional energy futures in Canada: A techno-economic energy model for Ontario," Energy, Elsevier, vol. 15(10), pages 885-898.
    2. Ashenayi, K. & Ramakumar, R., 1990. "IRES—A program to design integrated renewable energy systems," Energy, Elsevier, vol. 15(12), pages 1143-1152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    2. Cong, Rong-Gang & Shen, Shaochuan, 2014. "How to Develop Renewable Power in China? A Cost-Effective Perspective," MPRA Paper 112209, University Library of Munich, Germany.
    3. Yunesky Masip & Anibal Gutierrez & Joel Morales & Antonio Campo & Meyli Valín, 2019. "Integrated Renewable Energy System Based on IREOM Model and Spatial–Temporal Series for Isolated Rural Areas in the Region of Valparaiso, Chile," Energies, MDPI, vol. 12(6), pages 1-19, March.
    4. Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
    5. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    6. Akella, A.K. & Sharma, M.P. & Saini, R.P., 2007. "Optimum utilization of renewable energy sources in a remote area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 894-908, June.
    7. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    8. Yu, Hao & Wei, Yi-Ming & Tang, Bao-Jun & Mi, Zhifu & Pan, Su-Yan, 2016. "Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis," Applied Energy, Elsevier, vol. 184(C), pages 960-970.
    9. Iniyan, S. & Suganthi, L. & Samuel, Anand A., 2006. "Energy models for commercial energy prediction and substitution of renewable energy sources," Energy Policy, Elsevier, vol. 34(17), pages 2640-2653, November.
    10. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India," Energy, Elsevier, vol. 36(9), pages 5690-5702.
    11. Yilmaz, Pelin & Hakan Hocaoglu, M. & Konukman, Alp Er S., 2008. "A pre-feasibility case study on integrated resource planning including renewables," Energy Policy, Elsevier, vol. 36(3), pages 1223-1232, March.
    12. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 388-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:19:y:2000:i:1:p:291-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.