IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp556-562.html
   My bibliography  Save this article

Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells

Author

Listed:
  • Wang, Zhichao
  • Xin, Le
  • Zhao, Xusheng
  • Qiu, Yang
  • Zhang, Zhiyong
  • Baturina, Olga A.
  • Li, Wenzhen

Abstract

The effect of Ag particle size on oxygen reduction reaction (ORR) at the cathode was investigated in anion exchange membrane direct glycerol fuel cells (AEM-DGFC) with oxygen as an oxidant. At the anode, high purity glycerol (99.8 wt%) or crude glycerol (88 wt%, from soybean biodiesel) was used as fuel, and commercial Pt/C served as the anode catalyst. A solution phase-based nanocapsule synthesis method was successfully developed to prepare the non-precious Ag/C cathode catalyst, with LiBEt3H as a reducing agent. XRD and TEM characterizations show that as-synthesized Ag nanoparticles (NP) with a size of 2–9 nm are well dispersed on the Vulcan XC-72 carbon black support. Commercial Ag nanoparticles with a size of 20–40 nm were also supported on carbon black as a control sample. The results show that higher peak power density was obtained in AEM-DGFC employing an Ag-NP catalyst with smaller particle size: nanocapsule made Ag-NP > commercial Ag-NP (Alfa Aesar, 99.9%). With the nanocapsule Ag-NP cathode catalyst, the peak power density and open circuit voltage (OCV) of AEM-DGFC with high-purity glycerol at 80 °C are 86 mW cm−2 and 0.73 V, respectively. These are much higher than 45 mW cm−2 and 0.68 V for the AEM-DGFC with the commercial Ag/C cathode catalyst, which can be attributed to the enhanced kinetics and reduced internal resistance. Directly fed with crude glycerol, the AEM-DGFC with the nanocapsule Ag-NP cathode catalyst shows an encouraging peak power density of 66 mW cm−2, which shows great potential of direct use of biodiesel waste fuel for electricity generation.

Suggested Citation

  • Wang, Zhichao & Xin, Le & Zhao, Xusheng & Qiu, Yang & Zhang, Zhiyong & Baturina, Olga A. & Li, Wenzhen, 2014. "Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells," Renewable Energy, Elsevier, vol. 62(C), pages 556-562.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:556-562
    DOI: 10.1016/j.renene.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chun & Cao, Wei-Qin & Ji, Xiao-Feng & Wang, Jian & Zhong, Tao-Lin & Wang, Yu & Zhang, Qing, 2020. "In situ fuel phosphorylation facilitates the complete oxidation of glycerol in direct biomass cells," Renewable Energy, Elsevier, vol. 146(C), pages 699-704.
    2. Deng, Hao & Wang, Dawei & Xie, Xu & Zhou, Yibo & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization," Renewable Energy, Elsevier, vol. 91(C), pages 166-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    2. Ansis Mezulis & Christiaan Richter & Peteris Lesnicenoks & Ainars Knoks & Sarunas Varnagiris & Marius Urbonavicius & Darius Milcius & Janis Kleperis, 2023. "Studies on Water–Aluminum Scrap Reaction Kinetics in Two Steps and the Efficiency of Green Hydrogen Production," Energies, MDPI, vol. 16(14), pages 1-17, July.
    3. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
    4. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    5. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    6. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    7. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    8. Watt, Gerald D., 2014. "Kinetic evaluation of the viologen-catalyzed carbohydrate oxidation reaction for fuel cell application," Renewable Energy, Elsevier, vol. 63(C), pages 370-375.
    9. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
    10. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    11. Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.
    12. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    13. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    14. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2022. "Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimiz," Energy, Elsevier, vol. 261(PA).
    15. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    16. Liu, Yueling & Li, Huan, 2019. "Enhancing conversion from glucose to electricity by ferric chloride in a redox flow fuel cell," Energy, Elsevier, vol. 189(C).
    17. Sharma, Rajeev & Sheth, Pratik N., 2018. "Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA," Energy, Elsevier, vol. 151(C), pages 1007-1017.
    18. Baruah, Renika & Dixit, Marm & Basarkar, Pratik & Parikh, Dhrupad & Bhargav, Atul, 2015. "Advances in ethanol autothermal reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1345-1353.
    19. Mehrabian, Morteza & Mahmoudimehr, Javad, 2023. "A correlation for optimal steam-to-fuel ratio in a biogas-fueled solid oxide fuel cell with internal steam reforming by using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 219(P1).
    20. Song, Bing & Cao, Xuewen & Gao, Wenran & Aziz, Shazed & Gao, Shuai & Lam, Chun-Ho & Lin, Richen, 2022. "Preparation of nano-biochar from conventional biorefineries for high-value applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:556-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.