IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp699-704.html
   My bibliography  Save this article

In situ fuel phosphorylation facilitates the complete oxidation of glycerol in direct biomass cells

Author

Listed:
  • Yang, Chun
  • Cao, Wei-Qin
  • Ji, Xiao-Feng
  • Wang, Jian
  • Zhong, Tao-Lin
  • Wang, Yu
  • Zhang, Qing

Abstract

It is about a method to build direct biomass cells enabling complete fuel oxidation. Heated at a temperature from 40 °C to 90 °C, the fuel (glycerol) will be esterified in a solution of phosphoric acid to form monophosphate. A fuel cell fed with thus partly phosphorylated glycerol come with open circuit voltages varying from 0.65 to 0.83 V. The current densities are close to the values of a fuel cell run in a solution of NaOH, but 10 times higher than that of a cell with a neutral electrolyte (e.g. Na2SO4). Under optimized conditions, peak values of current density and power density are obtained at about 20 mA cm−2 and 2.2 mW cm−2 respectively. Thereafter a series of oxidized C1–C3 intermediates are detected in the discharged solutions. More importantly several cycles of fuel refeeding do not lead to any accumulation of glycerol or the discharging intermediates. This means in situ phosphorylation can successfully activate the fuel and facilitate its’ complete oxidation. Though discharging performance needs to be further improved, this partly phosphorylation method can be simple and effective to increase fuel utilization percentages in direct saccharide cells.

Suggested Citation

  • Yang, Chun & Cao, Wei-Qin & Ji, Xiao-Feng & Wang, Jian & Zhong, Tao-Lin & Wang, Yu & Zhang, Qing, 2020. "In situ fuel phosphorylation facilitates the complete oxidation of glycerol in direct biomass cells," Renewable Energy, Elsevier, vol. 146(C), pages 699-704.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:699-704
    DOI: 10.1016/j.renene.2019.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larsson, Ragnar & Folkesson, Börje & Spaziante, Placido M. & Veerasai, Waret & Exell, Robert H.B., 2006. "A high-power carbohydrate fuel cell," Renewable Energy, Elsevier, vol. 31(4), pages 549-552.
    2. Wang, Zhichao & Xin, Le & Zhao, Xusheng & Qiu, Yang & Zhang, Zhiyong & Baturina, Olga A. & Li, Wenzhen, 2014. "Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells," Renewable Energy, Elsevier, vol. 62(C), pages 556-562.
    3. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    4. Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    3. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    4. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    5. Wang, Zhiwei & Li, Zaifeng & Lei, Tingzhou & Yang, Miao & Qi, Tian & Lin, Lu & Xin, Xiaofei & Ajayebi, Atta & Yang, Yantao & He, Xiaofeng & Yan, Xiaoyu, 2016. "Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate," Applied Energy, Elsevier, vol. 183(C), pages 170-181.
    6. Cardoso, João & Silva, Valter & Eusébio, Daniela & Brito, Paulo & Boloy, Ronney Mancebo & Tarelho, Luís & Silveira, José Luz, 2019. "Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor," Renewable Energy, Elsevier, vol. 131(C), pages 713-729.
    7. Deng, Hao & Wang, Dawei & Xie, Xu & Zhou, Yibo & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization," Renewable Energy, Elsevier, vol. 91(C), pages 166-177.
    8. Li, Xiangping & Chen, Guanyi & Liu, Caixia & Ma, Wenchao & Yan, Beibei & Zhang, Jianguang, 2017. "Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 296-308.
    9. Irfan, Muhammad & Liu, Xianhua & Li, Shengling & Khan, Izhar Ullah & Li, Yang & Wang, Jiao & Wang, Xin & Du, Xiwen & Wang, Guangyi & Zhang, Pingping, 2020. "High-performance glucose fuel cell with bimetallic Ni–Co composite anchored on reduced graphene oxide as anode catalyst," Renewable Energy, Elsevier, vol. 155(C), pages 1118-1126.
    10. Bahari, Meisam & Malmberg, Michael A. & Brown, Daniel M. & Hadi Nazari, S. & Lewis, Randy S. & Watt, Gerald D. & Harb, John N., 2020. "Oxidation efficiency of glucose using viologen mediators for glucose fuel cell applications with non-precious anodes," Applied Energy, Elsevier, vol. 261(C).
    11. Herranz, D. & Escudero-Cid, R. & Montiel, M. & Palacio, C. & Fatás, E. & Ocón, P., 2018. "Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells," Renewable Energy, Elsevier, vol. 127(C), pages 883-895.
    12. Francisco Rodríguez & Yuby Cruz & Idoia Estiati & Juan F. Saldarriaga, 2019. "Kinetic Study of Corn and Sugarcane Waste Oxidative Pyrolysis," Energies, MDPI, vol. 12(23), pages 1-14, December.
    13. Amarasekara, Ananda S. & Gutierrez Reyes, Cristian D., 2019. "Brønsted acidic ionic liquid catalyzed one-pot conversion of cellulose to furanic biocrude and identification of the products using LC-MS," Renewable Energy, Elsevier, vol. 136(C), pages 352-357.
    14. Read, Adam & Hansen, Dane & Aloi, Sekoti & Pitt, William G. & Wheeler, Dean R. & Watt, Gerald D., 2012. "Monoalkyl viologens are effective carbohydrate O2-oxidation catalysts for electrical energy generation by fuel cells," Renewable Energy, Elsevier, vol. 46(C), pages 218-223.
    15. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    16. Scaldaferri, C.A. & Pasa, V.M.D., 2019. "Green diesel production from upgrading of cashew nut shell liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 303-313.
    17. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Ramanna, Luveshan & Rawat, Ismail & Bux, Faizal, 2017. "Light enhancement strategies improve microalgal biomass productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 765-773.
    19. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    20. Watt, Gerald D. & Hansen, Dane & Dodson, Daniel & Andrus, Merritt & Wheeler, Dean, 2011. "Electrical energy from carbohydrate oxidation during viologen-catalyzed O2-oxidation: Mechanistic insights," Renewable Energy, Elsevier, vol. 36(5), pages 1523-1528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:699-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.