IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp323-331.html
   My bibliography  Save this article

Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plants

Author

Listed:
  • Kendir, Tarik Efe
  • Ozdamar, Aydogan

Abstract

Load changes occurring in water turbines often result in pressure waves at hydroelectric power plants. Load reduction or the sudden closure of the turbines causes high pressures to build on the penstock similarly to a water hammer. This pressure can cause damage to components of the power plant. Surge tanks are used to prevent these problems. For two power plants operating at similar flow rates, diameters and lengths of the penstocks, and diameters and lengths of the tunnels, the surge tank with a smaller volume is the most economically viable.

Suggested Citation

  • Kendir, Tarik Efe & Ozdamar, Aydogan, 2013. "Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plants," Renewable Energy, Elsevier, vol. 60(C), pages 323-331.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:323-331
    DOI: 10.1016/j.renene.2013.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozdamar, Aydogan & Ozbalta, Necdet & Akin, Alp & Yildirim, E. Didem, 2005. "An application of a combined wind and solar energy system in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 624-637, December.
    2. Ozdamar, A. & Gursel, K. T. & Orer, G. & Pekbey, Y., 2004. "Investigation of the potential of wind-waves as a renewable energy resource: by the example of Cesme--Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 581-592, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riasi, Alireza & Tazraei, Pedram, 2017. "Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves," Renewable Energy, Elsevier, vol. 107(C), pages 138-146.
    2. Huang, Wei & Yang, Kailin & Ma, Jiming & Xu, Yaowu & Guo, Xinlei & Wang, Jue, 2018. "A new setting criterion of tailrace surge chambers for pumped-storage power plants," Renewable Energy, Elsevier, vol. 116(PA), pages 194-201.
    3. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    4. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    5. J. Yazdi & A. Hokmabadi & M. R. JaliliGhazizadeh, 2019. "Optimal Size and Placement of Water Hammer Protective Devices in Water Conveyance Pipelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 569-590, January.
    6. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    7. Sanghyun Kim & Dooyong Choi, 2022. "Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    8. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    9. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    10. Zhang, Jian & Qiu, Weixin & Wang, Qinyi & Yao, Tianyu & Hu, Chao & Liu, Yi, 2024. "Extreme water level of surge chamber in hydropower plant under combined operating conditions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Rezghi, A. & Riasi, A., 2016. "Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway," Renewable Energy, Elsevier, vol. 86(C), pages 611-622.
    12. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayat, Berna, 2013. "Wave power atlas of Eastern Mediterranean and Aegean Seas," Energy, Elsevier, vol. 54(C), pages 251-262.
    2. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
    3. Gualtieri, Giovanni & Secci, Sauro, 2011. "Wind shear coefficients, roughness length and energy yield over coastal locations in Southern Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1081-1094.
    4. Benli, Hüseyin, 2016. "Potential application of solar water heaters for hot water production in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 99-109.
    5. Saincher, Shaswat & Banerjee, Jyotirmay, 2016. "Influence of wave breaking on the hydrodynamics of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 704-717.
    6. Benli, Hüseyin, 2013. "Potential of renewable energy in electrical energy production and sustainable energy development of Turkey: Performance and policies," Renewable Energy, Elsevier, vol. 50(C), pages 33-46.
    7. Tar, Károly, 2008. "Some statistical characteristics of monthly average wind speed at various heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1712-1724, August.
    8. Shaahid, S.M., 2011. "Review of research on autonomous wind farms and solar parks and their feasibility for commercial loads in hot regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3877-3887.
    9. El Ouderni, Ahmed Ridha & Maatallah, Taher & El Alimi, Souheil & Ben Nassrallah, Sassi, 2013. "Experimental assessment of the solar energy potential in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 155-168.
    10. Ozgur, M. Arif, 2008. "Review of Turkey's renewable energy potential," Renewable Energy, Elsevier, vol. 33(11), pages 2345-2356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:323-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.