IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp476-489.html
   My bibliography  Save this article

An overview of research and energy evolution for small hydropower in Europe

Author

Listed:
  • Manzano-Agugliaro, Francisco
  • Taher, Myriam
  • Zapata-Sierra, Antonio
  • Juaidi, Adel
  • Montoya, Francisco G.

Abstract

Europe has a large tradition of Small Hydropower stations (SHP); these proliferate wherever there was an adequate supply of moving water and a need for electricity. As electricity demand grew many of these plants were abandoned. Today with the rising price of energy, SHP can be a solution to help rural electrification, furthermore SHPs do not consume the water that drives the turbines. The advantage of this technology is extremely robust and systems can last for 50 years or more with little maintenance. This paper summarizes an overview of SHP Hydropower in Europe. Hydropower on a small scale, or micro-hydro, is one of the most cost effective energy technologies to be considered for rural electrification in less developed countries. Europe is a market leader of SHP technology. Optimal turbine designs are available and new technical developments offer automated operation of SHP. The present role of SHP in Europe in the development of renewable energy sources is discussed through this paper. The main producers of SHP electricity in Europe are Italy, France, Spain, Germany and Sweden. On the other hand, 10 European countries are ranked based on the total numbers of SHPs: Germany (7,512), Italy (2,427), France (1,935), Sweden (1,901), Spain (1,047), Poland (722), Romania (274), Portugal (155) and UK (120). The research shows that there is a considerable scope for development and optimization of this technology. This opens new perspectives because it has a huge, as yet untapped potential in most areas of Europe and can make a significant contribution to future energy needs.

Suggested Citation

  • Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:476-489
    DOI: 10.1016/j.rser.2016.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    2. Ogayar, B. & Vidal, P.G. & Hernandez, J.C., 2009. "Analysis of the cost for the refurbishment of small hydropower plants," Renewable Energy, Elsevier, vol. 34(11), pages 2501-2509.
    3. Sachdev, Hira Singh & Akella, Ashok Kumar & Kumar, Niranjan, 2015. "Analysis and evaluation of small hydropower plants: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1013-1022.
    4. Dogan Altinbilek & Karin Seelos & Richard Taylor, 2005. "Hydropower's Role in Delivering Sustainability," Energy & Environment, , vol. 16(5), pages 815-824, September.
    5. Alonso-Tristán, C. & González-Peña, D. & Díez-Mediavilla, M. & Rodríguez-Amigo, M. & García-Calderón, T., 2011. "Small hydropower plants in Spain: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2729-2735, August.
    6. Stark, B.H. & Andò, E. & Hartley, G., 2011. "Modelling and performance of a small siphonic hydropower system," Renewable Energy, Elsevier, vol. 36(9), pages 2451-2464.
    7. Klimpt, Jean-Etienne & Rivero, Cristina & Puranen, Hannu & Koch, Frans, 2002. "Recommendations for sustainable hydroelectric development," Energy Policy, Elsevier, vol. 30(14), pages 1305-1312, November.
    8. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    9. David J. Fulford & Paul Mosley & Alastair Gill, 2000. "Recommendations on the use of micro-hydro power in rural development," Journal of International Development, John Wiley & Sons, Ltd., vol. 12(7), pages 975-983.
    10. Monteiro, Claudio & Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo, 2013. "Short-term forecasting model for electric power production of small-hydro power plants," Renewable Energy, Elsevier, vol. 50(C), pages 387-394.
    11. Islam, Shahid ul & Kumar, Arun, 2016. "Inflatable dams for shp projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 945-952.
    12. Malesios, Chrisovalantis & Arabatzis, Garyfallos, 2010. "Small hydropower stations in Greece: The local people's attitudes in a mountainous prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2492-2510, December.
    13. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    14. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    15. Yuksel, Ibrahim, 2012. "Global warming and environmental benefits of hydroelectric for sustainable energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3816-3825.
    16. Zimny, Jacek & Michalak, Piotr & Bielik, Sebastian & Szczotka, Krzysztof, 2013. "Directions in development of hydropower in the world, in Europe and Poland in the period 1995–2011," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 117-130.
    17. Butera, Ilaria & Balestra, Roberto, 2015. "Estimation of the hydropower potential of irrigation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 140-151.
    18. Bracken, L.J. & Bulkeley, H.A. & Maynard, C.M., 2014. "Micro-hydro power in the UK: The role of communities in an emerging energy resource," Energy Policy, Elsevier, vol. 68(C), pages 92-101.
    19. Lucchetti, Eleonora & Barbier, Julien & Araneo, Rodolfo, 2013. "Assessment of the technical usable potential of the TUM Shaft Hydro Power plant on the Aurino River, Italy," Renewable Energy, Elsevier, vol. 60(C), pages 648-654.
    20. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    21. Lars Mathiesen & Jostein Skaar & Lars Sørgard, 2013. "Electricity Production in a Hydro System with a Reservoir Constraint," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(2), pages 575-594, April.
    22. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    23. Yuksek, Omer & Komurcu, Murat Ihsan & Yuksel, Ibrahim & Kaygusuz, Kamil, 2006. "The role of hydropower in meeting Turkey's electric energy demand," Energy Policy, Elsevier, vol. 34(17), pages 3093-3103, November.
    24. Manders, Tanja N. & Höffken, Johanna I. & van der Vleuten, Erik B.A., 2016. "Small-scale hydropower in the Netherlands: Problems and strategies of system builders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1493-1503.
    25. Mirás Araújo, Jesús & Lindoso Tato, Elvira & Martínez López, Alberte, 2010. "The Development Of Renewable Energies In Galicia, 1980-2008. Engasa, An Outstanding Reference Of The Sector," Revista Galega de Economía, University of Santiago de Compostela. Faculty of Economics and Business., vol. 19(1).
    26. Williams, A.A. & Simpson, R., 2009. "Pico hydro – Reducing technical risks for rural electrification," Renewable Energy, Elsevier, vol. 34(8), pages 1986-1991.
    27. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    28. Montanari, R., 2003. "Criteria for the economic planning of a low power hydroelectric plant," Renewable Energy, Elsevier, vol. 28(13), pages 2129-2145.
    29. Bakis, Recep, 2007. "Electricity production opportunities from multipurpose dams (case study)," Renewable Energy, Elsevier, vol. 32(10), pages 1723-1738.
    30. Smith, N.P.A., 1994. "Key factors for the success of village hydro-electric programmes," Renewable Energy, Elsevier, vol. 5(5), pages 1453-1460.
    31. Yüksel, Ibrahim, 2010. "Energy production and sustainable energy policies in Turkey," Renewable Energy, Elsevier, vol. 35(7), pages 1469-1476.
    32. Uzlu, Ergun & Akpınar, Adem & Kömürcü, Murat İhsan, 2011. "Restructuring of Turkey’s electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin," Renewable Energy, Elsevier, vol. 36(2), pages 676-688.
    33. Balat, Havva, 2007. "A renewable perspective for sustainable energy development in Turkey: The case of small hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2152-2165, December.
    34. Punys, Petras & Baublys, Raimundas & Kasiulis, Egidijus & Vaisvila, Andrius & Pelikan, Bernhard & Steller, Janusz, 2013. "Assessment of renewable electricity generation by pumped storage power plants in EU Member States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 190-200.
    35. Perers, Richard & Lundin, Urban & Leijon, Mats, 2007. "Development of synchronous generators for Swedish hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 1008-1017, June.
    36. Manzano-Agugliaro, F. & Alcayde, A. & Montoya, F.G. & Zapata-Sierra, A. & Gil, C., 2013. "Scientific production of renewable energies worldwide: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 134-143.
    37. Cavazzini, Giovanna & Santolin, Alberto & Pavesi, Giorgio & Ardizzon, Guido, 2016. "Accurate estimation model for small and micro hydropower plants costs in hybrid energy systems modelling," Energy, Elsevier, vol. 103(C), pages 746-757.
    38. Thorburn, Karin & Leijon, Mats, 2005. "Case study of upgrading potential for a small hydro power station," Renewable Energy, Elsevier, vol. 30(7), pages 1091-1099.
    39. Kendir, Tarik Efe & Ozdamar, Aydogan, 2013. "Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plants," Renewable Energy, Elsevier, vol. 60(C), pages 323-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapia, A. & Millán, P. & Gómez-Estern, F., 2018. "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, Elsevier, vol. 126(C), pages 905-914.
    2. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    3. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    4. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2021. "Sustainable energy development: History of the concept and emerging themes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    6. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    7. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    8. López-González, A. & Ferrer-Martí, L. & Domenech, B., 2019. "Long-term sustainability assessment of micro-hydro projects: Case studies from Venezuela," Energy Policy, Elsevier, vol. 131(C), pages 120-130.
    9. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    10. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    11. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    12. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).
    13. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    14. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    15. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    16. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    17. Weiwei Yao & Yuansheng Chen & Guoan Yu & Mingzhong Xiao & Xiaoyi Ma & Fakai Lei, 2018. "Developing a Model to Assess the Potential Impact of TUM Hydropower Turbines on Small River Ecology," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    18. Dursun, Bahtiyar & Gokcol, Cihan, 2011. "The role of hydroelectric power and contribution of small hydropower plants for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 36(4), pages 1227-1235.
    19. Arabatzis, Garyfallos & Myronidis, Dimitris, 2011. "Contribution of SHP Stations to the development of an area and their social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3909-3917.
    20. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:476-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.