IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v54y2013icp63-69.html
   My bibliography  Save this article

Computational analysis of operating temperature, hydrogen flow rate and anode thickness in anode-supported flat-tube solid oxide fuel cells

Author

Listed:
  • Park, Joonguen
  • Kang, Juhyun
  • Bae, Joongmyeon

Abstract

Flat-tube solid oxide fuel cells (FT-SOFCs) are advantageous because of their easy sealing, low stack volume and low resistance to current collection. The performance of FT-SOFCs is determined by the electrochemical reaction, which is closely linked to the heat and mass transfer inside the cell. Therefore, both the electrochemical reaction and the transport phenomena are investigated in this study using a numerical approach. Numerical results are evaluated by physical property models, governing equations and electrochemical reaction models. After simulation, the results are compared with experimental data for code validation, and the current density and the temperature are presented as numerical results. The FT-SOFC performance improves with a higher operating temperature due to the activated electrochemical reaction. If the cell support is thickened in order to achieve higher mechanical strength, the mass transfer rate is reduced and the ohmic polarization increases. These phenomena can lower the performance. Increasing the amount of hydrogen provides a higher mass transfer rate; therefore, the FT-SOFC can obtain a higher and a more uniform current density distribution.

Suggested Citation

  • Park, Joonguen & Kang, Juhyun & Bae, Joongmyeon, 2013. "Computational analysis of operating temperature, hydrogen flow rate and anode thickness in anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 54(C), pages 63-69.
  • Handle: RePEc:eee:renene:v:54:y:2013:i:c:p:63-69
    DOI: 10.1016/j.renene.2012.08.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Joonguen & Bae, Joongmyeon & Kim, Jae-Yuk, 2012. "A numerical study on anode thickness and channel diameter of anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 42(C), pages 180-185.
    2. Lee, Kwang Ho & Strand, Richard K., 2009. "SOFC cogeneration system for building applications, part 1: Development of SOFC system-level model and the parametric study," Renewable Energy, Elsevier, vol. 34(12), pages 2831-2838.
    3. Akkaya, Ali Volkan & Sahin, Bahri & Erdem, Hasan Huseyin, 2009. "Thermodynamic model for exergetic performance of a tubular SOFC module," Renewable Energy, Elsevier, vol. 34(7), pages 1863-1870.
    4. Chiang, Lieh-Kwang & Liu, Hui-Chung & Shiu, Yao-Hua & Lee, Chien-Hsiung & Lee, Ryey-Yi, 2008. "Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell," Renewable Energy, Elsevier, vol. 33(12), pages 2580-2588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhongjie & Li, Hua & Birgersson, E., 2016. "Correlating variability of modeling parameters with cell performance: Monte Carlo simulation of a quasi-3D planar solid oxide fuel cell," Renewable Energy, Elsevier, vol. 85(C), pages 1301-1315.
    2. Guk, Erdogan & Kim, Jung-Sik & Ranaweera, Manoj & Venkatesan, Vijay & Jackson, Lisa, 2018. "In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples," Applied Energy, Elsevier, vol. 230(C), pages 551-562.
    3. Timurkutluk, Bora & Timurkutluk, Cigdem & Mat, Mahmut D. & Kaplan, Yuksel, 2016. "A review on cell/stack designs for high performance solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1101-1121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Joonguen & Bae, Joongmyeon & Kim, Jae-Yuk, 2012. "A numerical study on anode thickness and channel diameter of anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 42(C), pages 180-185.
    2. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    3. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    4. Denver F. Cheddie, 2010. "Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant," Energies, MDPI, vol. 3(4), pages 1-16, April.
    5. Lee, Kwang Ho & Strand, Richard K., 2009. "SOFC cogeneration system for building applications, part 2: System configuration and operating condition design," Renewable Energy, Elsevier, vol. 34(12), pages 2839-2846.
    6. Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2018. "Thermodynamic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 150(C), pages 434-450.
    7. Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
    8. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    9. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    10. Xiaoqiang Hong & Feng Shi, 2020. "Comparative Analysis of Small-Scale Integrated Solar ORC-Absorption Based Cogeneration Systems," Energies, MDPI, vol. 13(4), pages 1-15, February.
    11. Timurkutluk, Bora & Timurkutluk, Cigdem & Mat, Mahmut D. & Kaplan, Yuksel, 2016. "A review on cell/stack designs for high performance solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1101-1121.
    12. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    13. Ma, Yue & Wang, Zhe & Liu, Han & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "Efficient and sustainable power propulsion for all-electric ships: An integrated methanol-fueled SOFC-sCO2 system," Renewable Energy, Elsevier, vol. 230(C).
    14. Chen, Xudong & Ji, Yutao & Yan, Dong & Jia, Lichao & Han, Xiaotao & Wu, Kaiming & Yang, Jiajun & Li, Jian, 2024. "Thermal stress and contact analysis utilizing tested temperature data in a kW-class external-manifold solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 370(C).
    15. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    16. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    17. Guk, Erdogan & Ranaweera, Manoj & Venkatesan, Vijay & Kim, Jung-Sik & Jung, WooChul, 2020. "In-situ temperature monitoring directly from cathode surface of an operating solid oxide fuel cell," Applied Energy, Elsevier, vol. 280(C).
    18. Niknam, Taher & Meymand, Hamed Zeinoddini & Nayeripour, Majid, 2010. "A practical algorithm for optimal operation management of distribution network including fuel cell power plants," Renewable Energy, Elsevier, vol. 35(8), pages 1696-1714.
    19. Chitsaz, Ata & Sadeghi, Mohsen & Sadeghi, Maesoumeh & Ghanbarloo, Elham, 2018. "Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm," Energy, Elsevier, vol. 144(C), pages 420-431.
    20. Lyu, Zewei & Meng, Hao & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Xue, Huaqing & Zhao, Yongming & Zhang, Fudong, 2020. "Comparison of off-gas utilization modes for solid oxide fuel cell stacks based on a semi-empirical parametric model," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:54:y:2013:i:c:p:63-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.