IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i12p2839-2846.html
   My bibliography  Save this article

SOFC cogeneration system for building applications, part 2: System configuration and operating condition design

Author

Listed:
  • Lee, Kwang Ho
  • Strand, Richard K.

Abstract

An SOFC (Solid Oxide Fuel Cell) cogeneration optimization study was carried out for one small-scale and one large-scale building under both hot and cold weather conditions. Several different configurations of the SOFC system are operated using a defined set of input parameters to meet the actual heating, cooling and electrical demands on those two buildings The results are discussed and compared from four different perspectives: electric-only vs. cogeneration, energetic vs. economic, large-scale vs. small-scale buildings and hot vs. cold weather conditions. The main conclusion of this study is that optimization results vary widely depending on different system configurations and loading conditions and thus SOFC systems should be optimized based on the specific conditions to which they are exposed and not simply on a single operating condition.

Suggested Citation

  • Lee, Kwang Ho & Strand, Richard K., 2009. "SOFC cogeneration system for building applications, part 2: System configuration and operating condition design," Renewable Energy, Elsevier, vol. 34(12), pages 2839-2846.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2839-2846
    DOI: 10.1016/j.renene.2009.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109001669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Kwang Ho & Strand, Richard K., 2009. "SOFC cogeneration system for building applications, part 1: Development of SOFC system-level model and the parametric study," Renewable Energy, Elsevier, vol. 34(12), pages 2831-2838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    2. Vincenzo Liso & Yingru Zhao & Wenyuan Yang & Mads Pagh Nielsen, 2015. "Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household," Energies, MDPI, vol. 8(3), pages 1-19, March.
    3. Vialetto, Giulio & Rokni, Masoud, 2015. "Innovative household systems based on solid oxide fuel cells for a northern European climate," Renewable Energy, Elsevier, vol. 78(C), pages 146-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Joonguen & Bae, Joongmyeon & Kim, Jae-Yuk, 2012. "A numerical study on anode thickness and channel diameter of anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 42(C), pages 180-185.
    2. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    3. Park, Joonguen & Kang, Juhyun & Bae, Joongmyeon, 2013. "Computational analysis of operating temperature, hydrogen flow rate and anode thickness in anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 54(C), pages 63-69.
    4. Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
    5. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    6. Lyu, Zewei & Meng, Hao & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Xue, Huaqing & Zhao, Yongming & Zhang, Fudong, 2020. "Comparison of off-gas utilization modes for solid oxide fuel cell stacks based on a semi-empirical parametric model," Applied Energy, Elsevier, vol. 270(C).
    7. Xiaoqiang Hong & Feng Shi, 2020. "Comparative Analysis of Small-Scale Integrated Solar ORC-Absorption Based Cogeneration Systems," Energies, MDPI, vol. 13(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2839-2846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.