IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v42y2012icp77-83.html
   My bibliography  Save this article

Performance evaluation of closed-loop vertical ground heat exchangers by conducting in-situ thermal response tests

Author

Listed:
  • Lee, Chulho
  • Park, Moonseo
  • Nguyen, The-Bao
  • Sohn, Byonghu
  • Choi, Jong Min
  • Choi, Hangseok

Abstract

The effective thermal conductivity of six vertical closed-loop ground heat exchangers (GHEXs), which were installed in a test bed located in Wonju, South Korea, has been experimentally evaluated by performing in-situ thermal response tests (TRTs). To compare the thermal efficiency of the GHEXs in field, various installation conditions are considered such as different grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and shapes of the circulating pipe-section (conventional U-loop type vs. 3-pipe type). From the test results, it can be concluded that the cement grout has higher effective thermal conductivity than the bentonite grout by 7.4–10.1%, and the graphite outperforms the silica sand by 6.7–9.1% as a thermally-enhancing additive. In addition, the new 3-pipe type heat exchange pipe that yields less thermal interference between the inlet and outlet pipes shows better thermal performance over the conventional U-loop type heat exchange pipe by 14.1–14.5%. Based on the results from the in-situ thermal response tests, a series of cost analyses has been carried out to show the applicability of the cement grouting, the graphite additive, and the new 3-pipe type of heat exchange pipe section. For the same condition, the cement grouting can reduce the construction cost of GHEXs by around 40% in the given cost analysis scenario. In addition, an addition of graphite and use the new 3-pipe heat exchange pipe lead to about 8% and 6% cost reduction, respectively.

Suggested Citation

  • Lee, Chulho & Park, Moonseo & Nguyen, The-Bao & Sohn, Byonghu & Choi, Jong Min & Choi, Hangseok, 2012. "Performance evaluation of closed-loop vertical ground heat exchangers by conducting in-situ thermal response tests," Renewable Energy, Elsevier, vol. 42(C), pages 77-83.
  • Handle: RePEc:eee:renene:v:42:y:2012:i:c:p:77-83
    DOI: 10.1016/j.renene.2011.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandra Szulc-Wrońska & Barbara Tomaszewska, 2020. "Low Enthalpy Geothermal Resources for Local Sustainable Development: A Case Study in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    2. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.
    3. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    4. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Perego, Rodolfo & Viesi, Diego & Pera, Sebastian & Dalla Santa, Giorgia & Cultrera, Matteo & Visintainer, Paola & Galgaro, Antonio, 2020. "Revision of hydrothermal constraints for the installation of closed-loop shallow geothermal systems through underground investigation, monitoring and modeling," Renewable Energy, Elsevier, vol. 153(C), pages 1378-1395.
    6. Yang, Li-Hao & Liang, Jyun-De & Hsu, Chien-Yeh & Yang, Tai-Her & Chen, Sih-Li, 2019. "Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger," Renewable Energy, Elsevier, vol. 134(C), pages 970-981.
    7. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.
    8. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
    9. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    10. Sang Mu Bae & Yujin Nam & Jong Min Choi & Kwang Ho Lee & Jae Sang Choi, 2019. "Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test," Energies, MDPI, vol. 12(4), pages 1-16, February.
    11. Park, Sangwoo & Lee, Seokjae & Sung, Chihun & Choi, Hangseok, 2021. "Applicability evaluation of cast-in-place energy piles based on two-year heating and cooling operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Lee, Seokjae & Park, Sangwoo & Kang, Minkyu & Oh, Kwanggeun & Choi, Hangseok, 2022. "Effect of tube-in-tube configuration on thermal performance of coaxial-type ground heat exchanger," Renewable Energy, Elsevier, vol. 197(C), pages 518-527.
    13. Oh, Kwanggeun & Lee, Seokjae & Park, Sangwoo & Han, Shin-In & Choi, Hangseok, 2019. "Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions," Renewable Energy, Elsevier, vol. 144(C), pages 84-96.
    14. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    15. Daehoon Kim & Seokhoon Oh, 2018. "Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:42:y:2012:i:c:p:77-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.