Effect of tube-in-tube configuration on thermal performance of coaxial-type ground heat exchanger
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.07.088
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sangwoo Park & Seokjae Lee & Hyobum Lee & Khanh Pham & Hangseok Choi, 2016. "Effect of Borehole Material on Analytical Solutions of the Heat Transfer Model of Ground Heat Exchangers Considering Groundwater Flow," Energies, MDPI, vol. 9(5), pages 1-19, April.
- Li, Chao & Guan, Yanling & Yang, Ruitao & Lu, Xiong & Xiong, Wenxue & Long, Anjie, 2020. "Effect of inner pipe type on the heat transfer performance of deep-buried coaxial double-pipe heat exchangers," Renewable Energy, Elsevier, vol. 145(C), pages 1049-1060.
- Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
- Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Effects of flow direction and thermal short-circuiting on the performance of small coaxial ground heat exchangers," Renewable Energy, Elsevier, vol. 35(6), pages 1255-1265.
- Oh, Kwanggeun & Lee, Seokjae & Park, Sangwoo & Han, Shin-In & Choi, Hangseok, 2019. "Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions," Renewable Energy, Elsevier, vol. 144(C), pages 84-96.
- Jensen-Page, Linden & Narsilio, Guillermo A. & Bidarmaghz, Asal & Johnston, Ian W., 2018. "Investigation of the effect of seasonal variation in ground temperature on thermal response tests," Renewable Energy, Elsevier, vol. 125(C), pages 609-619.
- Lee, Chulho & Park, Moonseo & Nguyen, The-Bao & Sohn, Byonghu & Choi, Jong Min & Choi, Hangseok, 2012. "Performance evaluation of closed-loop vertical ground heat exchangers by conducting in-situ thermal response tests," Renewable Energy, Elsevier, vol. 42(C), pages 77-83.
- Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Improving the thermal performance of coaxial borehole heat exchangers," Energy, Elsevier, vol. 35(2), pages 657-666.
- Lee, Seokjae & Park, Sangwoo & Won, Jongmuk & Choi, Hangseok, 2021. "Influential factors on thermal performance of energy slabs equipped with an insulation layer," Renewable Energy, Elsevier, vol. 174(C), pages 823-834.
- Sung, Chihun & Park, Sangwoo & Lee, Seokjae & Oh, Kwanggeun & Choi, Hangseok, 2018. "Thermo-mechanical behavior of cast-in-place energy piles," Energy, Elsevier, vol. 161(C), pages 920-938.
- Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
- Holmberg, Henrik & Acuña, José & Næss, Erling & Sønju, Otto K., 2016. "Thermal evaluation of coaxial deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 65-76.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oh, Kwanggeun & Lee, Seokjae & Park, Sangwoo & Han, Shin-In & Choi, Hangseok, 2019. "Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions," Renewable Energy, Elsevier, vol. 144(C), pages 84-96.
- Peng Li & Peng Guan & Jun Zheng & Bin Dou & Hong Tian & Xinsheng Duan & Hejuan Liu, 2020. "Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger," Energies, MDPI, vol. 13(20), pages 1-19, October.
- Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
- Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
- Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2017. "A physical and semi-analytical comparison between coaxial BHE designs considering various piping materials," Energy, Elsevier, vol. 141(C), pages 1610-1621.
- Dai, Jiacheng & Li, Jingbin & Wang, Tianyu & Zhu, Liying & Tian, Kangjian & Chen, Zhaoting, 2023. "Thermal performance analysis of coaxial borehole heat exchanger using liquid ammonia," Energy, Elsevier, vol. 263(PE).
- Park, Sangwoo & Lee, Seokjae & Sung, Chihun & Choi, Hangseok, 2021. "Applicability evaluation of cast-in-place energy piles based on two-year heating and cooling operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
- Seokjae Lee & Sangwoo Park & Taek Hee Han & Jongmuk Won & Hangseok Choi, 2023. "Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
- Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
- Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
- Zanchini, E. & Lazzari, S., 2013. "Temperature distribution in a field of long Borehole Heat Exchangers (BHEs) subjected to a monthly averaged heat flux," Energy, Elsevier, vol. 59(C), pages 570-580.
- Perego, Rodolfo & Viesi, Diego & Pera, Sebastian & Dalla Santa, Giorgia & Cultrera, Matteo & Visintainer, Paola & Galgaro, Antonio, 2020. "Revision of hydrothermal constraints for the installation of closed-loop shallow geothermal systems through underground investigation, monitoring and modeling," Renewable Energy, Elsevier, vol. 153(C), pages 1378-1395.
- Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
- Sang Mu Bae & Yujin Nam & Jong Min Choi & Kwang Ho Lee & Jae Sang Choi, 2019. "Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test," Energies, MDPI, vol. 12(4), pages 1-16, February.
- Zanchini, E. & Lazzari, S., 2014. "New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields," Energy, Elsevier, vol. 70(C), pages 444-455.
- Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
- Liang Zhang & Songhe Geng & Jun Kang & Jiahao Chao & Linchao Yang & Fangping Yan, 2020. "Experimental Study on the Heat Exchange Mechanism in a Simulated Self-Circulation Wellbore," Energies, MDPI, vol. 13(11), pages 1-22, June.
- Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
More about this item
Keywords
Coaxial-type ground heat exchanger (GHEX); Turbulent flow; Thermal performance; Computational fluid dynamic (CFD) model; Parametric study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:518-527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.