IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i11p3222-3227.html
   My bibliography  Save this article

Validation of various windmill brake state models used by blade element momentum calculation

Author

Listed:
  • Pratumnopharat, P.
  • Leung, P.S.

Abstract

The concept of windmill brake state model is considered in this paper. Blade Element Momentum (BEM) calculation often calculates the value of thrust coefficient in windmill brake state. Unfortunately, thrust coefficient predicted by momentum theory deviated dramatically from the experimental data when the value of axial induction factor is greater than 0.5. To solve this problem and to increase the accuracy of the prediction, windmill break state model including tip loss effect must be applied to equations of thrust coefficient. The problem of interest is that which windmill break state model is suitable for the wind turbine model being simulated. The purpose of this paper is to compare the rotor power predicted by six different windmill brake state models. The aerodynamic code based on BEM theory has been implemented in Matlab and validated with the simulated result of AWT-27 wind turbine model reported by National Renewable Energy Laboratory (NREL). Six windmill brake state models to be compared are Glauert’s characteristic equation, classical brake state model, advanced brake state model, Wilson and Walker model, modified advanced brake state model, and Shen’s correction. The predicted power curves obtained from each windmill brake state model are compared to the measured power curve of AWT-27/P4. It has been shown that Shen’s correction gives the highest correlation to the measured data with r-square of 0.970 and the predicted annual energy production (AEP) is different from measured data by only 6.3%.

Suggested Citation

  • Pratumnopharat, P. & Leung, P.S., 2011. "Validation of various windmill brake state models used by blade element momentum calculation," Renewable Energy, Elsevier, vol. 36(11), pages 3222-3227.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:11:p:3222-3227
    DOI: 10.1016/j.renene.2011.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111001418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mejía, Juan M. & Chejne, Farid & Smith, Ricardo & Rodríguez, Luis F. & Fernández, Oscar & Dyner, Isaac, 2006. "Simulation of wind energy output at Guajira, Colombia," Renewable Energy, Elsevier, vol. 31(3), pages 383-399.
    2. Lanzafame, R. & Messina, M., 2010. "Power curve control in micro wind turbine design," Energy, Elsevier, vol. 35(2), pages 556-561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pratumnopharat, Panu & Leung, Pak Sing & Court, Richard S., 2014. "Wavelet transform-based stress-time history editing of horizontal axis wind turbine blades," Renewable Energy, Elsevier, vol. 63(C), pages 558-575.
    2. Pratumnopharat, Panu & Leung, Pak Sing & Court, Richard S., 2013. "Extracting fatigue damage parts from the stress–time history of horizontal axis wind turbine blades," Renewable Energy, Elsevier, vol. 58(C), pages 115-126.
    3. Yong Ma & Aiming Zhang & Lele Yang & Chao Hu & Yue Bai, 2019. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Jaime Liew & Kirby S. Heck & Michael F. Howland, 2024. "Unified momentum model for rotor aerodynamics across operating regimes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Peng, Yi-Xin & Xu, You-Lin & Zhan, Sheng, 2019. "A hybrid DMST model for pitch optimization and performance assessment of high-solidity straight-bladed vertical axis wind turbines," Applied Energy, Elsevier, vol. 250(C), pages 215-228.
    6. Lanzafame, R. & Messina, M., 2013. "Advanced brake state model and aerodynamic post-stall model for horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 415-420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    2. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    3. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    4. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    5. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    6. Henao, Felipe & Rodriguez, Yeny & Viteri, Juan Pablo & Dyner, Isaac, 2019. "Optimising the insertion of renewables in the Colombian power sector," Renewable Energy, Elsevier, vol. 132(C), pages 81-92.
    7. Dogru, Safak & Yilmaz, Oktay, 2024. "Extensive design and aerodynamic performance investigation of diffuser augmented wind turbine (DAWT) guided by generalized actuator disc theory," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    9. Puterbaugh, Martin & Beyene, Asfaw, 2011. "Parametric dependence of a morphing wind turbine blade on material elasticity," Energy, Elsevier, vol. 36(1), pages 466-474.
    10. Xie, Wei & Zeng, Pan & Lei, Liping, 2017. "Wind tunnel testing and improved blade element momentum method for umbrella-type rotor of horizontal axis wind turbine," Energy, Elsevier, vol. 119(C), pages 334-350.
    11. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    12. Ge, Mingwei & Sun, Haitao & Meng, Hang & Li, Xintao, 2024. "An improved B-L model for dynamic stall prediction of rough-surface airfoils," Renewable Energy, Elsevier, vol. 226(C).
    13. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    14. Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
    15. Heikal, Hasim A. & Abu-Elyazeed, Osayed S.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Maged M.S., 2018. "On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine," Renewable Energy, Elsevier, vol. 125(C), pages 295-305.
    16. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    17. Cemil Yigit, 2020. "Effect of Air-Ducted Blade Design on Horizontal Axis Wind Turbine Performance," Energies, MDPI, vol. 13(14), pages 1-15, July.
    18. Herbert, G.M. Joselin & Iniyan, S. & Goic, Ranko, 2010. "Performance, reliability and failure analysis of wind farm in a developing Country," Renewable Energy, Elsevier, vol. 35(12), pages 2739-2751.
    19. Meng, Jiayao & Dai, Kaoshan & Zhao, Zhi & Mao, Zhenxi & Camara, Alfredo & Zhang, Songhan & Mei, Zhu, 2020. "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation," Renewable Energy, Elsevier, vol. 159(C), pages 1224-1242.
    20. Song, Zhanfeng & Shi, Tingna & Xia, Changliang & Chen, Wei, 2012. "A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines," Energy, Elsevier, vol. 38(1), pages 104-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:11:p:3222-3227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.