IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v58y2013icp115-126.html
   My bibliography  Save this article

Extracting fatigue damage parts from the stress–time history of horizontal axis wind turbine blades

Author

Listed:
  • Pratumnopharat, Panu
  • Leung, Pak Sing
  • Court, Richard S.

Abstract

Horizontal axis wind turbine (HAWT) blades are a critical component of wind turbines. Full-scale blade fatigue testing is required to verify that the blades possess the strength and service life specified in the design. Unfortunately, fatigue tests must be run for a long time period, which has led blade testing laboratories to seek ways of accelerating fatigue testing time and reducing the costs of tests. The objective of this article is to propose a concept of applying accumulative power spectral density (AccPSD) to identify fatigue damage events contained in the stress–time history of HAWT blades. Based on short-time Fourier transform (STFT), a novel method called STFT-based fatigue damage part extracting method has been developed to extract fatigue damage parts from the stress–time history and to generate the edited stress–time history. It has been found that a STFT window size of 256 and an AccPSD level of 9800 Energy/Hz (cutoff level) provides the edited stress–time history having reduction of 15.38% in length with respect to the original length, whilst fatigue damage per repetition can be retained almost the same level as the original fatigue damage. In addition, an existing method, time correlated fatigue damage (TCFD), is used to validate the effectiveness of STFT-based fatigue damage part extracting method. The results suggest that not only does the STFT improve the accuracy of fatigue damage retained, but also it provides a shorter length of the edited stress–time history. To conclude, STFT is suggested as an alternative technique in fatigue durability study, especially for the field of wind turbine engineering.

Suggested Citation

  • Pratumnopharat, Panu & Leung, Pak Sing & Court, Richard S., 2013. "Extracting fatigue damage parts from the stress–time history of horizontal axis wind turbine blades," Renewable Energy, Elsevier, vol. 58(C), pages 115-126.
  • Handle: RePEc:eee:renene:v:58:y:2013:i:c:p:115-126
    DOI: 10.1016/j.renene.2013.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pratumnopharat, P. & Leung, P.S., 2011. "Validation of various windmill brake state models used by blade element momentum calculation," Renewable Energy, Elsevier, vol. 36(11), pages 3222-3227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pratumnopharat, Panu & Leung, Pak Sing & Court, Richard S., 2014. "Wavelet transform-based stress-time history editing of horizontal axis wind turbine blades," Renewable Energy, Elsevier, vol. 63(C), pages 558-575.
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaime Liew & Kirby S. Heck & Michael F. Howland, 2024. "Unified momentum model for rotor aerodynamics across operating regimes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yong Ma & Aiming Zhang & Lele Yang & Chao Hu & Yue Bai, 2019. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization," Energies, MDPI, vol. 12(10), pages 1-18, May.
    3. Pratumnopharat, Panu & Leung, Pak Sing & Court, Richard S., 2014. "Wavelet transform-based stress-time history editing of horizontal axis wind turbine blades," Renewable Energy, Elsevier, vol. 63(C), pages 558-575.
    4. Peng, Yi-Xin & Xu, You-Lin & Zhan, Sheng, 2019. "A hybrid DMST model for pitch optimization and performance assessment of high-solidity straight-bladed vertical axis wind turbines," Applied Energy, Elsevier, vol. 250(C), pages 215-228.
    5. Lanzafame, R. & Messina, M., 2013. "Advanced brake state model and aerodynamic post-stall model for horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 415-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:58:y:2013:i:c:p:115-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.