IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i11p3054-3060.html
   My bibliography  Save this article

Prediction of daily maximum temperature using a support vector regression algorithm

Author

Listed:
  • Paniagua-Tineo, A.
  • Salcedo-Sanz, S.
  • Casanova-Mateo, C.
  • Ortiz-García, E.G.
  • Cony, M.A.
  • Hernández-Martín, E.

Abstract

Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine.

Suggested Citation

  • Paniagua-Tineo, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Ortiz-García, E.G. & Cony, M.A. & Hernández-Martín, E., 2011. "Prediction of daily maximum temperature using a support vector regression algorithm," Renewable Energy, Elsevier, vol. 36(11), pages 3054-3060.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:11:p:3054-3060
    DOI: 10.1016/j.renene.2011.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111001443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ji-Long & Liu, Hong-Bin & Wu, Wei & Xie, De-Ti, 2011. "Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study," Renewable Energy, Elsevier, vol. 36(1), pages 413-420.
    2. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    3. Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
    4. Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
    5. Ododo, J.C. & Sulaiman, A.T. & Aidan, J. & Yuguda, M.M. & Ogbu, F.A., 1995. "The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria," Renewable Energy, Elsevier, vol. 6(7), pages 751-763.
    6. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    7. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    8. Parishwad, G.V. & Bhardwaj, R.K. & Nema, V.K., 1998. "Prediction of monthly-mean hourly relative humidity, ambient temperature, and wind velocity for India," Renewable Energy, Elsevier, vol. 13(3), pages 363-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    2. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    3. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    4. Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
    5. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    6. Rana Muhammad Adnan & Sarita Gajbhiye Meshram & Reham R. Mostafa & Abu Reza Md. Towfiqul Islam & S. I. Abba & Francis Andorful & Zhihuan Chen, 2023. "Application of Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    7. Giuseppina Nicolosi & Roberto Volpe & Antonio Messineo, 2017. "An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse," Energies, MDPI, vol. 10(5), pages 1-17, May.
    8. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Antonanzas, J. & Perpiñán-Lamigueiro, O. & Polo, J., 2014. "Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain," Renewable Energy, Elsevier, vol. 71(C), pages 534-544.
    9. Graff, Mario & Peña, Rafael & Medina, Aurelio & Escalante, Hugo Jair, 2014. "Wind speed forecasting using a portfolio of forecasters," Renewable Energy, Elsevier, vol. 68(C), pages 550-559.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    3. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    4. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    5. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    6. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    7. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    8. Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
    9. Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
    10. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    11. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    12. Tyralis, Hristos & Karakatsanis, Georgios & Tzouka, Katerina & Mamassis, Nikos, 2017. "Exploratory data analysis of the electrical energy demand in the time domain in Greece," Energy, Elsevier, vol. 134(C), pages 902-918.
    13. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    14. Kang, Jieyi & Reiner, David M., 2022. "What is the effect of weather on household electricity consumption? Empirical evidence from Ireland," Energy Economics, Elsevier, vol. 111(C).
    15. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    16. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    17. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
    18. Bramer, L.M. & Rounds, J. & Burleyson, C.D. & Fortin, D. & Hathaway, J. & Rice, J. & Kraucunas, I., 2017. "Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days," Applied Energy, Elsevier, vol. 205(C), pages 1408-1418.
    19. Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
    20. Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:11:p:3054-3060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.