IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v6y1995i7p751-763.html
   My bibliography  Save this article

The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria

Author

Listed:
  • Ododo, J.C.
  • Sulaiman, A.T.
  • Aidan, J.
  • Yuguda, M.M.
  • Ogbu, F.A.

Abstract

Using existing and new empirical model equations to analyse available data for nine stations located in different geographical and climatic zones in Nigeria, it is clearly demonstrated that maximum air temperature is an important climatological parameter which should be used in solar radiation modelling in Nigeria. It is also shown that seasonal variations in the values of the model parameters are significant.

Suggested Citation

  • Ododo, J.C. & Sulaiman, A.T. & Aidan, J. & Yuguda, M.M. & Ogbu, F.A., 1995. "The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria," Renewable Energy, Elsevier, vol. 6(7), pages 751-763.
  • Handle: RePEc:eee:renene:v:6:y:1995:i:7:p:751-763
    DOI: 10.1016/0960-1481(94)00097-P
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/096014819400097P
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(94)00097-P?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ertekin, Can & Yaldız, Osman, 1999. "Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey)," Renewable Energy, Elsevier, vol. 17(1), pages 95-102.
    2. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    3. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    4. Yıldırım, H. Başak & Teke, Ahmet & Antonanzas-Torres, Fernando, 2018. "Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2053-2065.
    5. Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
    6. Kaba, Kazım & Sarıgül, Mehmet & Avcı, Mutlu & Kandırmaz, H. Mustafa, 2018. "Estimation of daily global solar radiation using deep learning model," Energy, Elsevier, vol. 162(C), pages 126-135.
    7. Ajayi, Oluseyi O, 2013. "Sustainable energy development and environmental protection: Implication for selected states in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 532-539.
    8. Njau, Ernest C., 1998. "Amplitude-modulating periodicities in global and regional heat/temperature variations," Renewable Energy, Elsevier, vol. 13(3), pages 295-303.
    9. Xiang Yu, 2023. "Evaluating parallelized support vector regression and nearest neighbor regression with different input variations for estimating daily global solar radiation of the humid subtropical region in China," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 95-110.
    10. Mohammadi, Kasra & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lai, P.C. & Mansor, Zulkefli, 2016. "Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 423-434.
    11. Robaa, S.M., 2008. "Evaluation of sunshine duration from cloud data in Egypt," Energy, Elsevier, vol. 33(5), pages 785-795.
    12. Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
    13. Paniagua-Tineo, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Ortiz-García, E.G. & Cony, M.A. & Hernández-Martín, E., 2011. "Prediction of daily maximum temperature using a support vector regression algorithm," Renewable Energy, Elsevier, vol. 36(11), pages 3054-3060.
    14. Yohanna, Jonathan K. & Itodo, Isaac N. & Umogbai, Victor I., 2011. "A model for determining the global solar radiation for Makurdi, Nigeria," Renewable Energy, Elsevier, vol. 36(7), pages 1989-1992.
    15. Akarslan, Emre & Hocaoglu, Fatih Onur & Edizkan, Rifat, 2018. "Novel short term solar irradiance forecasting models," Renewable Energy, Elsevier, vol. 123(C), pages 58-66.
    16. Liu, Xiaoying & Xu, Yinlong & Zhong, Xiuli & Zhang, Wenying & Porter, John Roy & Liu, Wenli, 2012. "Assessing models for parameters of the Ångström–Prescott formula in China," Applied Energy, Elsevier, vol. 96(C), pages 327-338.
    17. Njau, E.c., 1999. "Differential variations of maximum and minimum temperatures," Renewable Energy, Elsevier, vol. 18(2), pages 147-155.
    18. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Njau, Ernest C., 1997. "A new analytical model for temperature predictions," Renewable Energy, Elsevier, vol. 11(1), pages 61-68.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:6:y:1995:i:7:p:751-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.