Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2011.04.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Choi, Jong Chan & Kim, Sang Done, 1992. "Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O," Energy, Elsevier, vol. 17(12), pages 1153-1164.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gondora, Wayne & Doudin, Khalid & Nowakowski, Daniel J. & Xiao, Bo & Ding, Yulong & Bridgwater, Tony & Yuan, Qingchun, 2016. "Encapsulation of phase change materials using rice-husk-char," Applied Energy, Elsevier, vol. 182(C), pages 274-281.
- Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
- Qiu, Zhongzhu & Zhao, Xudong & Li, Peng & Zhang, Xingxing & Ali, Samira & Tan, Junyi, 2015. "Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module," Energy, Elsevier, vol. 87(C), pages 686-698.
- Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Liu, Jia & Chen, Haisheng & Xu, Yujie & Wang, Liang & Tan, Chunqing, 2014. "A solar energy storage and power generation system based on supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 64(C), pages 43-51.
- Huyu Li & Guojun Yu & Huijin Xu & Xue Han & Huihao Liu, 2023. "A Review of the Mathematical Models for the Flow and Heat Transfer of Microencapsulated Phase Change Slurry (MEPCS)," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
- Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
- Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
- Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
- Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
- Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
- Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & An, Y., 2021. "Optimization of phase change thermal storage units/devices with multichannel flat tubes: A theoretical study," Renewable Energy, Elsevier, vol. 167(C), pages 700-717.
- Delgado, M. & Lázaro, A. & Mazo, J. & Peñalosa, C. & Marín, J.M. & Zalba, B., 2017. "Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system," Energy, Elsevier, vol. 138(C), pages 590-601.
- Yonghong Guo & Xinglong Zhang & Lijun Yang & Chao Xu & Xiaoze Du, 2017. "The Heat Transfer of Microencapsulated Phase Change Material Slurry and Its Thermal Energy Storage Performance of Combined Heat and Power Generating Units," Energies, MDPI, vol. 10(10), pages 1-8, October.
- Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
- Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
- Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2016. "Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit," Renewable Energy, Elsevier, vol. 89(C), pages 371-379.
- Krzysztof Dutkowski & Marcin Kruzel & Bartosz Zajączkowski, 2020. "Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method," Energies, MDPI, vol. 14(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2011. "Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling syst," Renewable Energy, Elsevier, vol. 36(1), pages 108-117.
- Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
- Gupta, Rajan & Shinde, Shraddha & Yella, Aswani & Subramaniam, C. & Saha, Sandip K., 2020. "Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications," Energy, Elsevier, vol. 194(C).
- Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
- Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
- Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
- Abokersh, Mohamed Hany & El-Morsi, Mohamed & Sharaf, Osama & Abdelrahman, Wael, 2017. "An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material," Energy, Elsevier, vol. 139(C), pages 1111-1125.
- Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2010. "Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array," Renewable Energy, Elsevier, vol. 35(1), pages 198-207.
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
- Agyenim, Francis, 2016. "The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems," Renewable Energy, Elsevier, vol. 87(P1), pages 229-239.
- Guelpa, Elisa & Sciacovelli, Adriano & Verda, Vittorio, 2013. "Entropy generation analysis for the design improvement of a latent heat storage system," Energy, Elsevier, vol. 53(C), pages 128-138.
- Bal, Lalit M. & Satya, Santosh & Naik, S.N. & Meda, Venkatesh, 2011. "Review of solar dryers with latent heat storage systems for agricultural products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 876-880, January.
- Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
- Pathak, Saurabh & Jain, Komal & Kumar, Prashant & Wang, Xu & Pant, R.P., 2019. "Improved thermal performance of annular fin-shell tube storage system using magnetic fluid," Applied Energy, Elsevier, vol. 239(C), pages 1524-1535.
- Colella, Francesco & Sciacovelli, Adriano & Verda, Vittorio, 2012. "Numerical analysis of a medium scale latent energy storage unit for district heating systems," Energy, Elsevier, vol. 45(1), pages 397-406.
- Ettouney, Hisham M. & Alatiqi, Imad & Al-Sahali, Mohammad & Ahmad Al-Ali, Safaa, 2004. "Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems," Renewable Energy, Elsevier, vol. 29(6), pages 841-860.
- Zheng, Zhang-Jing & Cai, Xiao & Yang, Chao & Xu, Yang, 2022. "Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm," Renewable Energy, Elsevier, vol. 195(C), pages 566-577.
- Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.
More about this item
Keywords
Phase change slurry (PCS); Solar thermal energy storage; Thermal performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:11:p:2932-2939. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.